Trending ▼   ResFinder  

Chapter 4.4 - Heat Exchangers

18 pages, 72 questions, 0 questions with responses, 0 total responses,    0    0
bee_energy
Jawaharlal Nehru Technological University (JNTUH), Hyderabad
+Fave Message
 Home > bee_energy >

Instantly get Model Answers to questions on this ResPaper. Try now!
NEW ResPaper Exclusive!

Formatting page ...

4. ENERGY PERFORMANCE ASSESSMENT OF HEAT EXCHANGERS 4.1 Introduction Heat exchangers are equipment that transfer heat from one medium to another. The proper design, operation and maintenance of heat exchangers will make the process energy efficient and minimize energy losses. Heat exchanger performance can deteriorate with time, off design operations and other interferences such as fouling, scaling etc. It is necessary to assess periodically the heat exchanger performance in order to maintain them at a high efficiency level. This section comprises certain proven techniques of monitoring the performance of heat exchangers, coolers and condensers from observed operating data of the equipment. 4.2 Purpose of the Performance Test To determine the overall heat transfer coefficient for assessing the performance of the heat exchanger. Any deviation from the design heat transfer coefficient will indicate occurrence of fouling. 4.3 Performance Terms and Definitions Overall heat transfer coefficient, U Heat exchanger performance is normally evaluated by the overall heat transfer coefficient U that is defined by the equation Q=U x A x LMTD Where Q = Heat transferred in kCal/hr A = Heat transfer surface area in m2 LMTD = Log Mean Temperature Difference in 0C U = Overall heat transfer Coefficient kCal/hr/m2/0C When the hot and cold stream flows and inlet temperatures are constant, the heat transfer coefficient may be evaluated using the above formula. It may be observed that the heat pick up by the cold fluid starts reducing with time. Bureau of Energy Efficiency 56 4. Energy Performance Assessment of Heat Exchangers Nomenclature A typical heat exchanger is shown in figure 4.1 with nomenclature. Cold fluid in w, ti Baffles Shell Cold fluid out w, to Hot fluid out W, To Hot fluid in W, Ti Figure 4.1 Typical Shell and Tube Heat Exchanger Heat duty of the exchanger can be calculated either on the hot side fluid or cold side fluid as given below. Heat Duty for Hot fluid, Qh = W x Cph x (Ti-To) ..Eqn-1, Heat Duty for Cold fluid, Qc = w x Cpc x ( to-ti) ...Eqn-2 If the operating heat duty is less than design heat duty, it may be due to heat losses, fouling in tubes, reduced flow rate (hot or cold) etc. Hence, for simple performance monitoring of exchanger, efficiency may be considered as factor of performance irrespective of other parameter. However, in industrial practice, fouling factor method is more predominantly used. 4.4 Methodology of Heat Exchanger Performance Assessment 4.4.1 Procedure for determination of Overall heat transfer Coefficient, U at field This is a fairly rigorous method of monitoring the heat exchanger performance by calculating the overall heat transfer coefficient periodically. Technical records are to be maintained for all the exchangers, so that problems associated with reduced efficiency and heat transfer can be identified easily. The record should basically contain historical heat transfer coefficient data versus time / date of observation. A plot of heat transfer coefficient versus time permits rational planning of an exchanger-cleaning program. The heat transfer coefficient is calculated by the equation U = Q / (A x LMTD) Where Q is the heat duty, A is the heat transfer area of the exchanger and LMTD is temperature driving force. The step by step procedure for determination of Overall heat transfer Coefficient are described below Bureau of Energy Efficiency 57 4. Energy Performance Assessment of Heat Exchangers Step A Monitoring and reading of steady state parameters of the heat exchanger under evaluation are tabulated as below: Parameters Hot fluid flow,W Cold fluid flow,w Hot fluid Temp, T Cold fluid Temp,t Hot fluid Pressure,P Cold fluid Pressure, p Units kg/h kg/h O C O C bar g bar g Inlet Outlet Step B With the monitored test data, the physical properties of the stream can be tabulated as required for the evaluation of the thermal data Parameters Units kg/m3 Hot fluid density, h kg/m3 Cold fluid density, c MpaS* Hot fluid Viscosity, h MPaS Cold fluid Viscosity, c Hot fluid Thermal kW/(m. K) Conductivity, kh Cold fluid Thermal kW/(m. K) Conductivity, kc Hot fluid specific heat kJ/(kg. K) Capacity, Cph Cold fluid specific heat kJ/(kg. K) Capacity, Cpc * MpaS Mega Pascal Second Inlet Outlet Density and viscosity can be determined by analysis of the samples taken from the flow stream at the recorded temperature in the plant laboratory. Thermal conductivity and specific heat capacity if not determined from the samples can be collected from handbooks. Step C Calculate the thermal parameters of heat exchanger and compare with the design data Parameters Units Test Data Design Data Heat Duty, Q kW bar * Hot fluid side pressure drop, Ph bar * Cold fluid side pressure drop, Pc Bureau of Energy Efficiency 58 4. Energy Performance Assessment of Heat Exchangers O C Temperature Range hot fluid , T O Temperature Range cold fluid , t C Capacity ratio, R ----Effectiveness, S ----O Corrected LMTD, MTD C Heat Transfer Coefficient, U kW/(m2. K) * - The pressure drop for the design flow can be rated with the relation Pressure drop is proportional to (Flow)1.75 Step D The following formulae are used for calculating the thermal parameters: 1. Heat Duty, Q = qs + ql Where, qs is the sensible heat and ql is the latent heat For Senisble heat qs = Wx Cph x(Ti- To)/1000/3600 in kW (or) qs = w x Cpc x (to-ti)/1000/3600 in kW For Latent heat ql= W x h , h Latent heat of Condensation of a hot condensing vapor (or) ql = w x c , where c - Latent heat of Vaporization 2. Hot Fluid Pressure Drop, Ph = Pi Po 3. Cold fluid pressure drop, Pc = pi- po 4. Temperature range hot fluid, T = Ti- To 5. Temperature range cold fluid, t = to ti 6. Capacity ratio, R = W x CPh / w x Cpc (or) (Ti- To) / (to- ti) 7. Effectiveness, S = (to- ti) / (Ti ti) Bureau of Energy Efficiency 59 4. Energy Performance Assessment of Heat Exchangers 8. LMTD a) Counter current Flow Co-current flow Ti To Ti To to ti ti to LMTD Counter current Flow = ((Ti-to) (To-ti)) / ln ((Ti-to)/(To-ti)) LMTD Co current Flow = ((Ti-ti) (To-to)) / ln ((Ti-ti)/(To-to)) b) Correction factor for LMTD to account for Cross flow (R + 1)1/2 x ln ((1- SR)/ (1- S )) F = ( 1 R) x ln 2- S ( R + 1 (R +1)1/2) 2- S ( R + 1 + (R +1)1/2) 9. Corrected LMTD = F x LMTD 10. Overall Heat Transfer Co-efficient U = Q / (A x Corrected LMTD) 4.4.2 Examples a. Liquid Liquid Exchanger A shell and tube exchanger of following configuration is considered being used for oil cooler with oil at the shell side and cooling water at the tube side. Tube Side 460 Nos x 25.4mmOD x 2.11mm thick x 7211mm long Pitch 31.75mm 30o triangular 2 Pass Shell Side 787 mm ID Baffle space 787 mm 1 Pass Bureau of Energy Efficiency 60 4. Energy Performance Assessment of Heat Exchangers The monitored parameters are as below: Parameters Hot fluid flow, W Cold fluid flow, w Hot fluid Temp, T Cold fluid Temp, t Hot fluid Pressure, P Cold fluid Pressure, p Units kg/h kg/h O C O C bar g bar g Inlet 719800 881150 145 25.5 4.1 6.2 Outlet 719800 881150 102 49 2.8 5.1 Calculation of Thermal data: Heat Transfer Area = 264.55 m2 1. Heat Duty: Q = qs + q l Hot fluid, Q = 719800 x 2.847 x (145 102) /3600 = 24477.4 kW Cold Fluid, Q = 881150 x 4.187 x (49 25.5) = 24083.4 kW 3600 2. Hot Fluid Pressure Drop Pressure Drop = Pi Po = 4.1 2.8 = 1.3 bar g. 3. Cold Fluid Pressure Drop Pressure Drop = pi po = 6.2 5.1 = 1.1 bar g. 4. Temperature range hot fluid Temperature Range T = Ti To = 145 102 = 43 o C. 5. Temperature Range Cold Fluid Temperature Range t = to ti = 49 25.5 = 23.5 0C. 6. Capacity Ratio Capacity ratio, R = (Ti-To) / (to-ti) = 43 = 1.83 23.5 7. Effectiveness Effectiveness, S = (to ti) / (Ti ti) =(49 25.5)/(145-25.5) =23.5/119.5 = 0.20. 8. LMTD a) LMTD, Counter Flow = (96 76.5)/ ln (96/76.5) = 85.9 0C. b) Correction Factor to account for Cross flow Bureau of Energy Efficiency 61 4. Energy Performance Assessment of Heat Exchangers (R + 1)1/2 x ln ((1- SR)/ (1- S ) F = ( 1 R) x ln 2- S ( R + 1 (R +1)1/2) 2- S ( R + 1 + (R +1)1/2) F = 0.977. 9. Corrected LMTD = F x LMTD = 0.977 x 85.9 = 83.9 oC. 10. Overall Heat Transfer Co-efficient U = Q/ A T = 24477.4/ (264.55 x 83.9) = 1.104 kW/m2. K Comparison of Calculated data with Design Data Parameters Duty, Q Units kW Hot fluid side pressure drop, Ph Bar Cold fluid side pressure drop, Pc Bar Temperature Range hot fluid, T O Temperature Range cold fluid, t Capacity ratio, R Effectiveness, S Corrected LMTD, MTD Heat Transfer Coefficient, U O C C --------O C kW/(m2. K) Test Data 24477.4 1.3 Design Data 25623 1.34 1.1 0.95 43 45 23.5 1.83 0.20 83.8 1.104 25 0.556 0.375 82.2 1.178 Inferences: Actual measured T L Distance across the heat exchanger; T- Terminal temperatures Design profile L Bureau of Energy Efficiency 62 4. Energy Performance Assessment of Heat Exchangers Heat Duty: Actual duty differences will be practically negligible as these duty differences could be because of the specific heat capacity deviation with the temperature. Also, there could be some heat loss due to radiation from the hot shell side. Pressure drop: Also, the pressure drop in the shell side of the hot fluid is reported normal (only slightly less than the design figure). This is attributed with the increased average bulk temperature of the hot side due to decreased performance of the exchanger. Temperature range: As seen from the data the deviation in the temperature ranges could be due to the increased fouling in the tubes (cold stream), since a higher pressure drop is noticed. Heat Transfer coefficient: The estimated value has decreased due to increased fouling that has resulted in minimized active area of heat transfer. Physical properties: If available from the data or Lab analysis can be used for verification with the design data sheet as a cross check towards design considerations. Troubleshooting: Fouled exchanger needs cleaning. b. Surface Condenser A shell and tube exchanger of following configuration is considered being used for Condensing turbine exhaust steam with cooling water at the tube side. Tube Side 20648 Nos x 25.4mmOD x 1.22mm thk x 18300mm long Pitch 31.75mm 60o triangular 1 Pass The monitored parameters are as below: Parameters Hot fluid flow, W Cold fluid flow, w Hot fluid Temp, T Cold fluid Temp, t Hot fluid Pressure, P Cold fluid Pressure, p Units kg/h kg/h O C O C Bar g Bar g Inlet 939888 55584000 No data 18 52.3 mbar 4 Calculation of Thermal data: Area = 27871 m2 1. Duty: Q = qS + q L Hot fluid, Q = 576990 kW Cold Fluid, Q = 581825.5 kW Bureau of Energy Efficiency 63 Outlet 939888 55584000 34.9 27 48.3 3.6 4. Energy Performance Assessment of Heat Exchangers 2. Hot Fluid Pressure Drop Pressure Drop = Pi Po = 52.3 48.3 = 4.0 mbar. 3. Cold Fluid Pressure Drop Pressure Drop = pi po = 4 3.6 = 0.4 bar. 4. Temperature range hot fluid Temperature Range T = Ti To = No data 5. Temperature Range Cold Fluid Temperature Range t = ti to = 27 18 = 9 oC. 6. Capacity Ratio Capacity ratio, R = Not significant in evaluation here. 7. Effectiveness Effectiveness, S = (to ti) / (Ti ti) = Not significant in evaluation here. 8. LMTD Calculated considering condensing part only a). LMTD, Counter Flow =((34.9 18)-(34.9-27))/ ln ((34.9-18)/(34.9-27)) = 11.8 deg C. b). Correction Factor to account for Cross flow F = 1.0. 9. Corrected LMTD MTD = F x LMTD = 1.0 x 11.8 = 11.8 deg C. 10. Heat Transfer Co-efficient Overall HTC, U = Q/ A T = 576990/ (27871 x 11.8) = 1.75 kW/m2. K Comparison of Calculated data with Design Data Parameters Duty, Q Hot fluid side pressure drop, Ph Units kW mBar Test Data 576990 4 mbar Cold fluid side pressure drop, Pc Bar 0.4 Temperature Range hot fluid, T O Temperature Range cold fluid, t Capacity ratio, R Effectiveness, S Corrected LMTD, MTD Heat Transfer Coefficient, U O Bureau of Energy Efficiency Design Data 588430 3.7 mbar C C --------O C kW/(m2. K) 64 (27-18) = 9 (28-19)=9 11.8 1.75 8.9 2.37 4. Energy Performance Assessment of Heat Exchangers Inferences: Actual measured T L Distance across the heat exchanger; T- Terminal temperatures Design profile L Heat Duty: Actual duty differences will be practically negligible as these duty differences could be because of the specific heat capacity deviation with the temperature. Also, there could be some heat loss due to radiation from the hot shell side. Pressure drop: The condensing side operating pressure raised due to the backpressure caused by the non-condensable. This has resulted in increased pressure drop across the steam side Temperature range: With reference to cooling waterside there is no difference in the range however, the terminal temperature differences has increased indicating lack of proper heat transfer. Heat Transfer coefficient: Heat transfer coefficient has decreased due to increased amount of non-condensable with the steam. Trouble shooting: Operations may be checked for tightness of the circuit and ensure proper venting of the system. The vacuum source might be verified for proper functioning. c. Vaporizer A shell and tube exchanger of following configuration is considered being used for vaporizing chlorine with steam at the shell side. Tube Side 200 Nos x 25.4mmOD x 1.22mm thick x 6000mm long Pitch 31.75mm 30o triangular 2 Pass Area = 95.7.m2 Bureau of Energy Efficiency 65 4. Energy Performance Assessment of Heat Exchangers The monitored parameters are as below: Parameters Hot fluid flow, W Cold fluid flow, w Hot fluid Temp, T Cold fluid Temp, t Hot fluid Pressure, P Cold fluid Pressure, p Units kg/h kg/h O C O C Bar g Bar g Inlet 5015 43500 108 30 0.4 9 Outlet 5015 43500 108 34 0.3 8.8 Calculation of Thermal data: 1. Duty: Q = qS + q L Hot fluid, Q = 3130 kW Cold Fluid, Q = qS + qL = 180.3 kW + 2948 kW = 3128.3 kW 2. Hot Fluid Pressure Drop Pressure Drop = Pi Po = 0.4 0.3 = 0.1 bar 3. Cold Fluid Pressure Drop Pressure Drop = pi po = 9 8.8 = 0.2 bar. 4. Temperature range hot fluid Temperature Range T = Ti To = 0 oC 5. Temperature Range Cold Fluid Temperature Range t = ti to = 34 30 = 4 oC. 6. Capacity Ratio Capacity ratio, R = Not significant in evaluation here. 7. Effectiveness Effectiveness, S = (to ti) / (Ti ti) = Not significant in evaluation here. 8. LMTD Calculated considering condensing part only a) LMTD, Counter Flow =((108 30)-(108-34))/ ln ((108-30)/(108-34)) = 76 oC. b) Correction Factor to account for Cross flow F = 1.0. 9. Corrected LMTD MTD = F x LMTD = 1.0 x 76 = 76 oC. 10. Heat Transfer Co-efficient Overall HTC, U = Q/ A T = 3130/ (95.7 x 76) = 0.43 kW/m2. K Bureau of Energy Efficiency 66 4. Energy Performance Assessment of Heat Exchangers Comparison of Calculated data with Design Data Parameters Units Test Data Duty, Q kW 3130 Hot fluid side pressure drop, Bar 0.1 Ph Cold fluid side pressure Bar 0.2 drop, Pc O Temperature Range hot C fluid, T O Temperature Range cold C 4 fluid, t Capacity ratio, R ----Effectiveness, S ----O Corrected LMTD, MTD C 76 2 Heat Transfer Coefficient, U kW/(m . K) 0.42 Design Data 3130 Neg 4 0.44 Inferences: Actual measured T L Distance across the heat exchanger; T- Terminal temperatures Design profile L Heat Duty: There is no difference inferred from the duty as the exchanger is performing as per the requirement Pressure drop: The steam side pressure drop has increased in spite of condensation at the steam side. Indication of non-condensable presence in steam side Temperature range: No deviations Heat Transfer coefficient: Even at no deviation in the temperature profile at the chlorine side, heat transfer coefficient has decreased with an indication of overpressure at the shell side. This indicates disturbances to the condensation of steam at the shell side. Noncondensable suspected at steam side. Trouble shooting: Operations may be checked for presence of chlorine at the shell side through tube leakages. Observing the steam side vent could do this. Alternately condensate pH could be tested for presence of acidity. Bureau of Energy Efficiency 67 4. Energy Performance Assessment of Heat Exchangers d. Air heater A finned tube exchanger of following configuration is considered being used for heating air with steam in the tube side. The monitored parameters are as below: Parameters Hot fluid flow, W Cold fluid flow, w Hot fluid Temp, T Cold fluid Temp, t Hot fluid Pressure, P Cold fluid Pressure, p Units kg/h kg/h O C O C Bar g Bar g Inlet 3000 92300 150 30 Outlet 3000 92300 150 95 200 mbar 180 mbar Calculation of Thermal data: Bare tube Area = 42.8 m2; Fined tube area = 856 m2 1.Duty: Hot fluid, Q = 1748 kW Cold Fluid, Q = 1726 kW 2. Hot Fluid Pressure Drop Pressure Drop = Pi Po = Neg 3. Cold Fluid Pressure Drop Pressure Drop = pi po = 200 180 = 20 mbar. 4. Temperature range hot fluid Temperature Range T = Ti To = Not required. 5. Temperature Range Cold Fluid Temperature Range t = ti to = 95 30 = 65 oC. 6. Capacity Ratio Capacity ratio, R = Not significant in evaluation here. 7. Effectiveness Effectiveness, S = (to ti) / (Ti ti) = Not significant in evaluation here. 8. LMTD Calculated considering condensing part only a) LMTD, Counter Flow =((150 30)-(150-95)/ ln ((150-30)/(150-95)) = 83.3 oC. b) Correction Factor to account for cross flow F = 0.95 9. Corrected LMTD MTD = F x LMTD = 0.95 x 83.3 = 79 oC. 10. Overall Heat Transfer Co-efficient (HTC) U = Q/ A T = 1748/ (856 x 79) = 0.026 kW/m2. K Bureau of Energy Efficiency 68 4. Energy Performance Assessment of Heat Exchangers Comparison of Calculated data with Design Data Parameters Units Test Data Design Data Duty, Q kW 1748 1800 Hot fluid side pressure drop, Ph Bar Neg Neg Cold fluid side pressure drop, Pc Bar 20 15 Temperature Range hot fluid, T O C Temperature Range cold fluid, t O C 65 65 C 79 79 kW/(m2. K) 0.026 0.03 Capacity ratio, R ----- Effectiveness, S ----O Corrected LMTD, MTD Heat Transfer Coefficient, U Inferences: Actual measured T L Distance across the heat exchanger; T- Terminal temperatures Design profile L Heat Duty: The difference inferred from the duty as the exchanger is under performing than required Pressure drop: The airside pressure drop has increased in spite of condensation at the steam side. Indication of choking and dirt blocking at the airside. Temperature range: No deviations Heat Transfer coefficient: Decreased because of decreased fin efficiency due to choking on air side. Trouble shooting: Operations may be checked to perform pulsejet cleaning with steam / blow air jet on air side if the facility is available. Mechanical cleaning may have to be planned during any down time in the immediate future. Bureau of Energy Efficiency 69 4. Energy Performance Assessment of Heat Exchangers 4.4.3 Instruments for monitoring: The test and evaluation of the performance of the heat exchanger equipment is carried out by measurement of operating parameters upstream and downstream of the exchanger. Due care needs to be taken to ensure the accuracy and correctness of the measured parameter. The instruments used for measurements require calibration and verification prior to measurement. Parameters Fluid flow Units Instruments used kg/h Flow can be measured with instruments like Orifice flow meter, Vortex flow meter, Venturi meters, Coriollis flow meters, Magnetic flow meter as applicable to the fluid service and flow ranges O Temperature C Thermo gauge for low ranges, RTD, etc. Pressure Bar g Liquid manometers, Draft gauge, Pressure gauges Bourdon and diaphragm type, Absolute pressure transmitters, etc. Density kg/m3 Measured in the Laboratory as per ASTM standards, hydrometer, etc Viscosity MpaS Measured in the Laboratory as per ASTM standards, viscometer, etc. Specific heat capacity J/(kg.K) Measured in the Laboratory as per ASTM standards Thermal conductivity W/(m.K) Measured in the Laboratory as per ASTM standards %wt (or) % Vol Measured in the Laboratory as per ASTM standards using Chemical analysis, HPLC, GC, Spectrophotometer, etc. Composition+ 4.4.4 Terminology used in Heat Exchangers Terminology Definition Co current flow exchanger Ratio of the products of mass flow rate and specific heat capacity of the cold fluid to that of the hot fluid. Also computed by the ratio of temperature range of the hot fluid to that of the cold fluid. Higher the ratio greater will be size of the exchanger An exchanger wherein the fluid flow direction of the cold and hot fluids are same Counter flow exchanger Exchangers wherein the fluid flow direction of the cold and hot fluids are opposite. Normally preferred Cross flow An exchanger wherein the fluid flow direction of the cold and hot fluids are in cross. Capacity ratio Bureau of Energy Efficiency 70 Unit 4. Energy Performance Assessment of Heat Exchangers kg/m3 Density It is the mass per unit volume of a material Effectiveness Ratio of the cold fluid temperature range to that of the inlet temperature difference of the hot and cold fluid. Higher the ratio lesser will be requirement of heat transfer surface. Fouling The phenomenon of formation and development of scales and deposits over the heat transfer surface diminishing the heat flux. The process of fouling will get indicated by the increase in pressure drop Fouling Factor The reciprocal of heat transfer coefficient of the dirt formed in the heat (m2.K)/W exchange process. Higher the factor lesser will be the overall heat transfer coefficient. The capacity of the heat exchanger equipment expressed in terms of W heat transfer rate, viz. magnitude of energy or heat transferred per time. It means the exchanger is capable of performing at this capacity in the given system Heat Duty Heat exchanger Refers to the nomenclature of equipment designed and constructed to transmit heat content (enthalpy or energy) of a comparatively high temperature hot fluid to a lower temperature cold fluid wherein the temperature of the hot fluid decreases (or remain constant in case of losing latent heat of condensation) and the temperature of the cold fluid increases (or remain constant in case of gaining latent heat of vaporisation). A heat exchanger will normally provide indirect contact heating. E.g. A cooling tower cannot be called a heat exchanger where water is cooled by direct contact with air Heat Flux The rate of heat transfer per unit surface of a heat exchanger Heat transfer The process of transport of heat energy from a hot source to the comparatively cold surrounding Heat transfer surface or heat Transfer area Refers to the surface area of the heat exchanger that provides the indirect contact between the hot and cold fluid in effecting the heat transfer. Thus the heat transfer area is defined as the surface having both sides wetted with one side by the hot fluid and the other side by the cold fluid providing indirect contact for heat transfer The heat flux per unit temperature difference across boundary layer of Individual Heat transfer Coefficient the hot / cold fluid film formed at the heat transfer surface. The magnitude of heat transfer coefficient indicates the ability of heat conductivity of the given fluid. It increases with increase in density, velocity, specific heat, geometry of the film forming surface LMTD Correction factor Logarithmic Mean Temperature difference, LMTD Calculated considering the Capacity and effectiveness of a heat exchanging process. When multiplied with LMTD gives the corrected LMTD thus accounting for the temperature driving force for the cross flow pattern as applicable inside the exchanger The logarithmic average of the terminal temperature approaches across a heat exchanger Bureau of Energy Efficiency 71 W/ m2 m2 W/( m2.K) o C 4. Energy Performance Assessment of Heat Exchangers Overall Heat transfer Coefficient Pressure drop Specific heat capacity Temperature Approach Temperature Range Terminal temperature Thermal Conductivity Viscosity The ratio of heat flux per unit difference in approach across W/(m2.K) a heat exchange equipment considering the individual coefficient and heat exchanger metal surface conductivity. The magnitude indicates the ability of heat transfer for a given surface. Higher the coefficient lesser will be the heat transfer surface requirement The difference in pressure between the inlet and outlet of a Bar heat exchanger The heat content per unit weight of any material per degree J/(kg.K) raise/fall in temperature o The difference in the temperature between the hot and cold C fluids at the inlet / outlet of the heat exchanger. The greater the difference greater will be heat transfer flux o The difference in the temperature between the inlet and C outlet of a hot/cold fluid in a heat exchanger o The temperatures at the inlet / outlet of the hot / cold fluid C steams across a heat exchanger. The rate of heat transfer by conduction though any W/(m2.K) substance across a distance per unit temperature difference The force on unit volume of any material that will cause per Pa velocity Bureau of Energy Efficiency 72 4. Energy Performance Assessment of Heat Exchangers QUESTIONS 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. What is meant by LMTD ? Distinguish between heat exchanger efficiency and effectiveness. Explain the terms heat duty and capacity ratio. What is meant by fouling? List five heat exchangers used in industrial practice. What are the parameters, which are to be monitored for the performance assessment of heat exchangers? In a heat exchanger the hot stream enters at 70OC and leaves at 55OC. On the other side the cold stream enters at 30OC and leaves at 55OC. Find out the LMTD of the heat exchanger. In a condenser what type of heats are considered in estimating the heat duty? a) Latent Heat b) Sensible heat c) Specific heat d) Latent heat and sensible heat What is the need for performance assessment of a heat exchanger? The unit of overall coefficient of heat transfer is a) kCal/hr/m2 oC b) kCal/kg oC c) kCal/m2 hr d) kCal/hg m2 REFERENCES 1. Process Heat Transfer by D.Q.Kern, Edn. 1965. 2. Modern Power Station Practice British Electricity International- Volume G; Chapter 7 Plant performance and performance monitoring. 3. Coulsons & Richardson s CHEMICAL ENGINEERING Volume 3 third edition 4. Scimod Scientific Modeling Software , techno software International, India 5. Ganapathy. V, Fouling factor estimated quickly , O&G Journal, Aug 1992. 6. Liberman, Norman P, Trouble shooting Process Operations, Penwell Books, Tulsa, Oklahoma Bureau of Energy Efficiency 73

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 


Tags : Bureau of Energy Efficiency, BEE, National Productivity Council of India, NPC, Energy Audit, Certified Energy Manager, Certified Energy Auditor, EM & EA, bee papers, bee sample papers, bee books, portal for bee india, bee question bank, bee question papers with answers, bee model test papers, solved board question papers of last year, previous years solved question papers, free online solved question paper, india sample questions papers, last 10 years papers, guess sample questions papers, important questions, specimen / mock papers, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005.  

© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

bee_energy chat