Trending ▼   ResFinder  

Chapter 4.5 - Electric Motors and Variable Speed Drives

13 pages, 31 questions, 0 questions with responses, 0 total responses,    0    0
bee_energy
Jawaharlal Nehru Technological University (JNTUH), Hyderabad
+Fave Message
 Home > bee_energy >

Instantly get Model Answers to questions on this ResPaper. Try now!
NEW ResPaper Exclusive!

Formatting page ...

5. ENERGY PERFORMANCE ASSESSMENT OF MOTORS / VARIABLE SPEED DRIVES 5.1 Introduction The two parameters of importance in a motor are efficiency and power factor. The efficiencies of induction motors remain almost constant between 50% to 100% loading (Refer figure 5.1). With motors designed to perform this function efficiently; the opportunity for savings with motors rests primarily in their selection and use. When a motor has a higher rating than that required by the equipment, motor operates at part load. In this state, the efficiency of the motor is reduced. Replacement of under loaded motors with smaller motors will allow a fully loaded smaller motor to operate at a higher efficiency. This arrangement is generally most economical for larger motors, and only when they are operating at less than one-third to one-half capacity, depending on their size. Figure 5.1 Efficiency vs. Loading 5.2 Performance Terms and Definitions Efficiency : The efficiency of the motor is given by = P loss P out = 1 P in P in Where Pout Output power of the motor Pin Input power of the motor PLoss Losses occurring in motor Motor Loading : Motor Loading % = Bureau of Energy Efficiency Actual operating load of the motor x 100 Rated capacity of the motor 74 5. Energy Performance Assessment of Motors / Variable Speed Drives 5.3 Efficiency Testing While input power measurements are fairly simple, measurement of output or losses need a laborious exercise with extensive testing facilities. The following are the testing standards widely used. Europe: IEC 60034-2, and the new IEC 61972 US: IEEE 112 - Method B Japan: JEC 37 Even between these standards the difference in efficiency value is up to 3%. For simplicity nameplate efficiency rating may be used for calculations if the motor load is in the range of 50 100 %. Field Tests for Determining Efficiency (Note: The following section is a repeat of material provided in the chapter-2 on Electrical Motors in Book-3.) No Load Test : The motor is run at rated voltage and frequency without any shaft load. Input power, current, frequency and voltage are noted. The no load P.F. is quite low and hence low PF watt meters are required. From the input power, stator I2R losses under no load are subtracted to give the sum of Friction and Windage (F&W) and core losses. To separate core and F & W losses, test is repeated at variable voltages. It is worthwhile plotting no-load input kW versus Voltage; the intercept is F & W kW loss component. F&W and core losses = No load power (watts) (No load current)2 Stator resistance Stator and Rotor I2R Losses : The stator winding resistance is directly measured by a bridge or volt amp method. The resistance must be corrected to the operating temperature. For modern motors, the operating temperature is likely to be in the range of 1000C to 1200C and necessary correction should be made. Correction to 750C may be inaccurate. The correction factor is given as follows : R 2 235 + t 2 = , where, t1 = ambient temperature, oC & t2 =- operating temperature, oC. R 1 235 + t 1 The rotor resistance can be determined from locked rotor test at reduced frequency, but rotor I2R losses are measured from measurement of rotor slip. Rotor I2R losses = Slip (Stator Input Stator I2R Losses Core Loss) Accurate measurement of slip is possible by stroboscope or non-contact type tachometer. Slip also must be corrected to operating temperature. Bureau of Energy Efficiency 75 5. Energy Performance Assessment of Motors / Variable Speed Drives Stray Load Losses : These losses are difficult to measure with any accuracy. IEEE Standard 112 gives a complicated method, which is rarely used on shop floor. IS and IEC standards take a fixed value as 0.5 % of output. It must be remarked that actual value of stray losses is likely to be more. IEEE 112 specifies values from 0.9 % to 1.8 %. Motor Rating Stray Losses 1 125 HP 1.8 % 125 500 HP 1.5 % 501 2499 HP 1.2 % 2500 and above 0.9 % Points for Users : It must be clear that accurate determination of efficiency is very difficult. The same motor tested by different methods and by same methods by different manufacturers can give a difference of 2 %. Estimation of efficiency in the field can be summarized as follows: a) Measure stator resistance and correct to operating temperature. From rated current value, I2R losses are calculated. b) From rated speed and output, rotor I2R losses are calculated c) From no load test, core and F & W losses are determined for stray loss The method is illustrated by the following example : Example : Motor Specifications Rated power = 34 kW/45 HP Voltage = 415 Volt Current = 57 Amps Speed = 1475 rpm Insulation class = F Frame = LD 200 L Connection = Delta Voltage, V = 415 Volts Current, I = 16.1 Amps Frequency, F = 50 Hz Stator phase resistance at 300C = 0.264 Ohms No load power, Pnl = 1063.74 Watts No load test Data Bureau of Energy Efficiency 76 5. Energy Performance Assessment of Motors / Variable Speed Drives a) Calculate iron plus friction and windage losses b) Calculate stator resistance at 1200C R2 = R1 235 + t 2 235 + t 1 c) Calculate stator copper losses at operating temperature of resistance at 1200C d) Calculate full load slip(s) and rotor input assuming rotor losses are slip times rotor input. e) Determine the motor input assuming that stray losses are 0.5 % of the motor rated power f) Calculate motor full load efficiency and full load power factor Solution a) b) Let Iron plus friction and windage loss, Pi + fw No load power, Pnl = 1063.74 Watts Stator Copper loss, P st-300C (Pst.cu) = 3 (16.1 / 3)2 0.264 = 68.43 Watts Pi + fw = Pnl Pst.cu = 1063.74 68.43 = 995.3 W Stator Resistance at 1200C, R1200C = 0.264 120 + 235 30 + 235 = 0.354 ohms per phase c) Stator copper losses at full load, Pst.cu 1200C = 3 (57 / 3)2 0.354 = 1150.1 Watts d) Full load slip S = (1500 1475) / 1500 = 0.0167 Rotor input, Pr e) = = = Poutput/ (1-S) 34000 / (1-0.0167) 34577.4 Watts Motor full load input power, P input = Pr + Pst.cu 1200C + (Pi + fw) + Pstray = 34577.4 + 1150.1 + 995.3 + (0.005* 34000) = 36892.8 Watts * where, stray losses = 0.5% of rated output (assumed) f) Motor efficiency at full load Bureau of Energy Efficiency 77 5. Energy Performance Assessment of Motors / Variable Speed Drives P output Efficiency Full Load PF = Pinput 100 = 34000 100 36892.8 = 92.2 % = = = P input 3 V I fl 36892.8 3 415 57 0.90 Comments : a) The measurement of stray load losses is very difficult and not practical even on test beds. b) The actual value of stray loss of motors up to 200 HP is likely to be 1 % to 3 % compared to 0.5 % assumed by standards. c) The value of full load slip taken from the nameplate data is not accurate. Actual measurement under full load conditions will give better results. d) The friction and windage losses really are part of the shaft output; however, in the above calculation, it is not added to the rated shaft output, before calculating the rotor input power. The error however is minor. e) When a motor is rewound, there is a fair chance that the resistance per phase would increase due to winding material quality and the losses would be higher. It would be interesting to assess the effect of a nominal 10 % increase in resistance per phase. 5.4 Determining Motor Loading 1. By Input Power Measurements First measure input power Pi with a hand held or in-line power meter Pi = Three-phase power in kW Note the rated kW and efficiency from the motor name plate The figures of kW mentioned in the name plate is for output conditions. So corresponding input power at full-rated load fl = Efficiency at full-rated load Pir = Input power at full-rated load in kW The percentage loading can now be calculated as follows Bureau of Energy Efficiency 78 5. Energy Performance Assessment of Motors / Variable Speed Drives Example The nameplate details of a motor are given as power = 15 kW, efficiency = 0.9. Using a power meter the actual three phase power drawn is found to be 8 kW. Find out the loading of the motor. Input power at full-rated power in kW, Pir = 15 /0.9 = 16.7 kW Percentage loading = 8/16.7 = 48 % 2. By Line Current Measurements The line current load estimation method is used when input power cannot be measured and only amperage measurements are possible. The amperage draw of a motor varies approximately linearly with respect to load, down to about 75% of full load. Below the 75% load point, power factor degrades and the amperage curve becomes increasingly non-linear. In the low load region, current measurements are not a useful indicator of load. However, this method may be used only as a preliminary method just for the purpose of identification of oversized motors. % Load = Input load current *100 (Valid up to 75% loading) Input rated current 3. Slip Method In the absence of a power meter, the slip method can be used which requires a tachometer. This method also does not give the exact loading on the motors. Slip *100% Load = Ss Sr Where: Load = Output power as a % of rated power Slip = Synchronous speed - Measured speed in rpm Ss = Synchronous speed in rpm at the operating frequency Sr = Nameplate full-load speed Example: Slip Load Calculation Given: Synchronous speed in rpm = 1500 at 50 HZ operating frequency. ( Synchronous speed = 120f/P) f: frequency, P: Number of poles Nameplate full load speed = 1450 Measured speed in rpm = 1480 Nameplate rated power = 7.5 kW Determine actual output power. Bureau of Energy Efficiency 79 5. Energy Performance Assessment of Motors / Variable Speed Drives 1500 1480 *100% = 40% 1500 1450 From the above equation, actual output power would be 40% x 7.5 kW = 3 kW Load = The speed/slip method of determining motor part-load is often favored due to its simplicity and safety advantages. Most motors are constructed such that the shaft is accessible to a tachometer or a strobe light. The accuracy of the slip method, however, is limited. The largest uncertainty relates to the accuracy with which manufacturers report the nameplate full-load speed. Manufacturers generally round their reported full-load speed values to some multiple of 5 rpm. While 5 rpm is but a small percent of the full-load speed and may be considered as insignificant, the slip method relies on the difference between full-load nameplate and synchronous speeds. Given a 40 rpm correct slip, a seemingly minor 5 rpm disparity causes a 12% change in calculated load. Slip also varies inversely with respect to the motor terminal voltage squared. A voltage correction factor can, also, be inserted into the slip load equation. The voltage compensated load can be calculated as shown Where: Load = Output power as a % of rated power Slip = Synchronous speed - Measured speed in rpm Ss = Synchronous speed in rpm Sr = Nameplate full-load speed V = RMS voltage, mean line to line of 3 phases Vr = Nameplate rated voltage 5.5 Performance Evaluation of Rewound Motors Ideally, a comparison should be made of the efficiency before and after a rewinding. A relatively simple procedure for evaluating rewind quality is to keep a log of no-load input current for each motor in the population. This figure increases with poor quality rewinds. A review of the rewind shop s procedure should also provide some indication of the quality of work. When rewinding a motor, if smaller diameter wire is used, the resistance and the I2R losses will increase. Bureau of Energy Efficiency 80 5. Energy Performance Assessment of Motors / Variable Speed Drives 5.6 Format for Data Collection The motor loading survey can be performed using the format given below: Motor Field Measurement Format Company_____________________________ Location_______________________ Date ________ Process________________________ Department_____________________ General Data Driven Equipment__________________ Motor Operating Profile: Motor Name Plate Data No of hours of operation Manufacturer ____________________________ Model __________________________________ Serial Number ___________________________ Type :Squirrel cage/Slip ring_________________ Size (hp/kW)____________________________ Synchronous Speed (RPM) _________________ Full-Load Speed (RPM) ___________________ Voltage Rating __________________________ Full-Load Amperage _____________________ Full-Load Power Factor (%) _______________ Full-Load Efficiency (%) _________________ Temperature Rise _______________________ Insulation Class ________________________ I Shift _____________ II Shift _____________ III Shift _____________ Annual Operating Time ______ hours/year Type of load 1.Load is quite steady, motor On during shift 2.Load starts, stops, but is constant when On 3.Load starts, stops, and fluctuates when On Measured Data Supply Voltage By Voltmeter V RY ________ V avg ______ V YB ________ V BR ________ Input Amps By Ammeter A a __________ A b __________ A avg ______ A c __________ Power Factor (PF) _____________________ Input Power (kW) ______________________ From Test Certificate Load 100% 75% 25% No Load Current PF Efficiency Stator resistance per phase = Rewound Yes ,if yes How many times rewound ?--No Motor Loading % _____________________ Motor Operating Speed ____________RPM At frequency of __________ Driven Equipment Operating Speed __________RPM Type of Transmission (Direct/Gear/Fluid coupling) Bureau of Energy Efficiency 81 5. Energy Performance Assessment of Motors / Variable Speed Drives The monitoring format for rewound motor is given below: Section Equipment Code Motor Code Motor Type Sq.Cage No Load Current Slip Ring New Motor A V After Rewinding A V Starter Resistance/phase New Rewound No load loss New Watts Rewound Watts 5.7 Application of Variable Speed Drives (VSD) Although there are many methods of varying the speeds of the driven equipment such as hydraulic coupling, gear box, variable pulley etc., the most possible method is one of varying the motor speed itself by varying the frequency and voltage by a variable frequency drive. 5.7.1 Concept of Variable Frequency Drive The speed of an induction motor is proportional to the frequency of the AC voltage applied to it, as well as the number of poles in the motor stator. This is expressed by the equation: RPM = (f x 120) / p Where f is the frequency in Hz, and p is the number of poles in any multiple of 2. Therefore, if the frequency applied to the motor is changed, the motor speed changes in direct proportion to the frequency change. The control of frequency applied to the motor is the job given to the VSD. The VSD's basic principle of operation is to convert the electrical system frequency and voltage to the frequency and voltage required to drive a motor at a speed other than its rated speed. The two most basic functions of a VSD are to provide power conversion from one frequency to another, and to enable control of the output frequency. VSD Power Conversion As illustrated by Figure 5.1, there are two basic components, a rectifier and an inverter, to accomplish power conversion. The rectifier receives the 50Hz AC voltage and converts it to direct current (DC) voltage. A DC bus inside the VSD functions as a "parking lot" for the DC voltage. The DC bus energizes the inverter, which converts it back to AC voltage again. The inverter can be Bureau of Energy Efficiency Figure 5.1 Components of a Variable Speed Drive 82 5. Energy Performance Assessment of Motors / Variable Speed Drives controlled to produce an output frequency of the proper value for the desired motor shaft speed. 5.7.2 Factors for Successful Implementation of Variable Speed Drives a) Load Type for Variable Frequency Drives The main consideration is whether the variable frequency drive application require a variable torque or constant torque drive. If the equipment being driven is centrifugal, such as a fan or pump, then a variable torque drive will be more appropriate. Energy savings are usually the primary motivation for installing variable torque drives for centrifugal applications. For example, a fan needs less torque when running at 50% speed than it does when running at full speed. Variable torque operation allows the motor to apply only the torque needed, which results in reduced energy consumption. Conveyors, positive displacement pumps, punch presses, extruders, and other similar type applications require constant level of torque at all speeds. In which case, constant torque variable frequency drives would be more appropriate for the job. A constant torque drive should have an overload current capacity of 150% or more for one minute. Variable torque variable frequency drives need only an overload current capacity of 120% for one minute since centrifugal applications rarely exceed the rated current. If tight process control is needed, then you may need to utilize a sensor less vector, or flux vector variable frequency drive, which allow a high level of accuracy in controlling speed, torque, and positioning. b) Motor Information The following motor information will be needed to select the proper variable frequency drive: Full Load Amperage Rating. Using a motor's horsepower is an inaccurate way to size variable frequency drives. Speed Range. Generally, a motor should not be run at any speed less than 20% of its specified maximum speed allowed. If it is run at a speed less than this without auxiliary motor cooling, the motor will overheat. Auxiliary motor cooling should be used if the motor must be operated at very slow speeds. Multiple Motors. To size a variable frequency drive that will control more than one motor, add together the full-load amp ratings of each of the motors. All motors controlled by a single drive must have an equal voltage rating. c) Efficiency and Power Factor The variable frequency drive should have an efficiency rating of 95% or better at full load. Variable frequency drives should also offer a true system power factor of 0.95 or better across the operational speed range, to save on demand charges, and to protect the equipment (especially motors). d) Protection and Power Quality Motor overload Protection for instantaneous trip and motor over current. Bureau of Energy Efficiency 83 5. Energy Performance Assessment of Motors / Variable Speed Drives Additional Protection: Over and under voltage, over temperature, ground fault, control or microprocessor fault. These protective circuits should provide an orderly shutdown of the VFD, provide indication of the fault condition, and require a manual reset (except under voltage) before restart. Under voltage from a power loss shall be set to automatically restart after return to normal. The history of the previous three faults shall remain in memory for future review. If a built-up system is required, there should also be externally-operated short circuit protection, door-interlocked fused disconnect and circuit breaker or motor circuit protector (MCP) To determine if the equipment under consideration is the right choice for a variable speed drive: The load patterns should be thoroughly studied before exercising the option of VSD. In effect the load should be of a varying nature to demand a VSD ( refer figure 5.3 & 5.4). Figure 5.3 Example of an excellent variable speed drive candidate Figure 5.4 Example of a poor variable speed drive candidate The first step is to identify the number of operating hours of the equipment at various load conditions. This can be done by using a Power analyzer with continuous data storage or by a simple energy meter with periodic reading being taken. 5.7.3 Information needed to Evaluate Energy Savings for Variable Speed Application 1. Method of flow control to which adjustable speed is compared: o output throttling (pump) or dampers (fan) o recirculation (pump) or unrestrained flow (fan) o adjustable-speed coupling (eddy current coupling) o inlet guide vanes or inlet dampers (fan only) o two-speed motor. 2. Pump or fan data: o head v's flow curve for every different type of liquid (pump) or gas (fan) that is handled o Pump efficiency curves. Bureau of Energy Efficiency 84 5. Energy Performance Assessment of Motors / Variable Speed Drives 3. Process information: o specific gravity (for pumps) or specific density of products (for fans) o system resistance head/flow curve o equipment duty cycle, i.e. flow levels and time duration. 4. Efficiency information on all relevant electrical system apparatus: o motors, constant and variable speed o variable speed drives o gears o transformers. If we do not have precise information for all of the above, we can make reasonable assumptions for points 2 and 4. Bureau of Energy Efficiency 85 5. Energy Performance Assessment of Motors / Variable Speed Drives QUESTIONS 1) Define motor efficiency. 2) Why it is difficult to measure motor efficiency at site? 3) Describe the various methods by which you calculate motor loading. 4) If no instrument other than tachometer is available, what method you would suggest for measuring the motor load? 5) A 20 kW rated motor is drawing actual measured power of 14 kW. If the rated efficiency is 92%, determine the motor loading? 6) What are the limitations of slip method in determining motor loading? 7) A 4 pole motor is operating at a frequency of 50 Hz. Find the RPM of the motor? 8) What are the two factors influencing the speed of induction motor? 9) A fan s operating hours and loading are given below: 15 hours at 100% load 8 hours at 95% load 1 hour at 40% load Is the application suitable candidate for application of VSD? 11) The losses in a variable speed drive is a) 12% b) 8% c)<5% d) no losses at all REFERENCES 1. Motor challenge: Office of Industrial Technologies, Department of Energy, USA 2. Energy audit Reports of National Productivity Council Bureau of Energy Efficiency 86

Related ResPapers
Chapter 3.2 - Electric Motors
by bee_energy 
Chapter 2.3 - Steam System
by bee_energy 
Chapter 1.1 - Energy Scenario
by bee_energy 
Chapter 2.8 - Waste Heat Recovery
by bee_energy 

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 


Tags : Bureau of Energy Efficiency, BEE, National Productivity Council of India, NPC, Energy Audit, Certified Energy Manager, Certified Energy Auditor, EM & EA, bee papers, bee sample papers, bee books, portal for bee india, bee question bank, bee question papers with answers, bee model test papers, solved board question papers of last year, previous years solved question papers, free online solved question paper, india sample questions papers, last 10 years papers, guess sample questions papers, important questions, specimen / mock papers, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005.  

© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

bee_energy chat