Trending ▼   ResFinder  

NSW HSC 2002 : PHYSICS

42 pages, 82 questions, 0 questions with responses, 0 total responses,    0    0
nsw_hsc
  
+Fave Message
 Home > nsw_hsc >

Instantly get Model Answers to questions on this ResPaper. Try now!
NEW ResPaper Exclusive!

Formatting page ...

2002 H I G H E R S C H O O L C E R T I F I C AT E E X A M I N AT I O N Physics Total marks 100 General Instructions Reading time 5 minutes Working time 3 hours Write using black or blue pen Draw diagrams using pencil Board-approved calculators may be used A data sheet, formulae sheets and Periodic Table are provided at the back of this paper Write your Centre Number and Student Number at the top of pages 13, 17, 21 and 23 Section I Pages 2 25 75 marks This section has two parts, Part A and Part B Part A 15 marks Attempt Questions 1 15 Allow about 30 minutes for this part Part B 60 marks Attempt Questions 16 27 Allow about 1 hour and 45 minutes for this part Section II Pages 27 37 25 marks Attempt ONE question from Questions 28 32 Allow about 45 minutes for this section 433 Section I 75 marks Part A 15 marks Attempt Questions 1 15 Allow about 30 minutes for this part Use the multiple-choice answer sheet. Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely. Sample: 2+4= (A) 2 A (B) 6 (C) 8 B C (D) 9 D If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer. A B C D If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows. correct A B C 2 D 1 The diagram shows the trajectory of a golf ball. P Q Which set of arrows shows the direction of the acceleration of the ball at points P and Q respectively? At P At Q (A) (B) (C) (D) 2 A spaceship is travelling at a very high speed. What effects would be noted by a stationary observer? (A) Time runs slower on the spaceship and it contracts in length. (B) Time runs faster on the spaceship and it contracts in length. (C) Time runs slower on the spaceship and it increases in length. (D) Time runs faster on the spaceship and it increases in length. 3 The table shows the value of the acceleration due to gravity on the surface of Earth and on the surface of Mercury. Acceleration due to gravity (m s 2 ) Earth 9.8 Mercury 3.8 A person has a weight of 550 N on the surface of Earth. What would be the person s weight on the surface of Mercury? (A) 56.1 N (B) 213 N (C) 550 N (D) 1420 N 3 4 The diagram shows four positions of a car on a roller coaster ride. Direction of travel S R P Q At which point during this ride would the occupant experience maximum g force ? (A) P (B) Q (C) R (D) S 5 The table contains information related to two planets orbiting a distant star. Planets Mass (kg) Orbital radius (m) Radius of planet (m) Length of day (s) Orbital period (s) Alif 1.21 1025 4.00 1011 8.0 106 9.5 104 8.75 107 Ba 1.50 1024 8.00 1011 4.0 106 4.7 104 ____ The orbital period of the planet Ba can be determined by using data selected from this table. What is the orbital period of the planet Ba? (A) 3.10 107 s (B) 5.51 107 s (C) 1.39 108 s (D) 2.47 108 s 4 6 What is the role of a transformer at an electrical power station? (A) To reduce heating in the transmission lines by stepping up the voltage (B) To reduce heating in the transmission lines by stepping up the current (C) To increase heating in the transmission lines by stepping up the voltage (D) To increase heating in the transmission lines by stepping up the current 7 A student performed an experiment to measure the force on a long current-carrying conductor placed perpendicular to an external magnetic field. The graph shows how the force on a 1.0 m length of the conductor varied as the current through the conductor was changed. Force (N) 0.7 3.0 Current (A) What was the magnitude of the external magnetic field in this experiment? (A) 0.23 T (B) 1.1 T (C) 2.1 T (D) 4.3 T 5 8 A single-turn coil of wire is placed in a uniform magnetic field B, so that the plane of the coil is parallel to the field, as shown in the diagrams. The coil can move freely. An electric current I flows around the coil in the direction shown. In which direction does the coil begin to move as a consequence of the interaction between the external magnetic field and the current? (A) (B) B B I I (C) (D) B B I I 6 9 In a student experiment, a bar magnet is dropped through a long plastic tube of length l and diameter d. The time taken for it to hit the floor is recorded. N S d N S l Plastic d Copper The experiment is repeated using a copper tube of the same length and diameter. Which of the following statements is correct? (A) The magnet will take the same time to hit the floor in both cases. (B) The magnet will come to rest in the middle of the copper tube. (C) The magnet will take longer to fall through the copper tube. (D) The magnet will take longer to fall through the plastic tube. 7 10 The coil of an AC generator rotates at a constant rate in a magnetic field as shown. B P B B Q B R S B T Which of the following diagrams represents the curve of induced emf against position? (A) Q Induced emf P R T Position S (B) T P Induced emf Q S Position R (C) Induced emf P Q S T R Position (D) P R T Induced emf Position Q S 8 11 Which of the following describes an n-type semiconductor? (A) A semiconductor doped to produce extra free electrons (B) A semiconductor doped to remove free electrons (C) A semiconductor doped to produce extra holes (D) An undoped semiconductor 12 Which of the following graphs shows the behaviour of a superconducting material? (A) (B) Resistance ( ) 0 Resistance ( ) 0 Temperature (K) (C) Temperature (K) (D) Resistance ( ) 0 Resistance ( ) 0 Temperature (K) 9 Temperature (K) 13 The diagram shows the side view of a simple cathode ray tube. + R Fluorescent screen R What is the function of the components labelled R ? (A) To produce cathode rays (B) To stop cathode rays striking the screen (C) To deflect the cathode rays vertically (D) To deflect the cathode rays horizontally 14 During the early 1950s most transistors were manufactured using germanium. Why was germanium used instead of silicon? (A) Silicon is more brittle than germanium. (B) Germanium could be more easily produced in a purified form. (C) Germanium is a more abundant raw material. (D) Silicon does not retain its semiconductor properties at high temperatures. 10 15 A student carried out an experiment during which light of different frequencies was shone onto a metal surface to produce photoelectrons. The student measured the maximum kinetic energy of the emitted photoelectrons as the frequency of light was altered. The relationship between the maximum kinetic energy of the photoelectrons and the frequency of the light incident on the metal surface is given by: Ek(max) = hf where Ek(max) = maximum kinetic energy of the photoelectrons f = frequency of light used h = Planck s constant = a constant dependent on the metal used. How could the student best analyse the data to determine a value for Planck s constant? (A) Plot Ek(max) against f and find the gradient of the line of best fit. (B) Plot Ek(max) against and find the gradient of the line of best fit. (C) Plot Ek(max) against f and find the intercept of the line of best fit. (D) Plot Ek(max) against and find the intercept of the line of best fit. 11 BLANK PAGE 12 Board of Studies NSW 2002 2002 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I (continued) Part B 60 marks Attempt Questions 16 27 Allow about 1 hour and 45 minutes for this part Answer the questions in the spaces provided. Show all relevant working in questions involving calculations. Question 16 (8 marks) Please turn over 434 13 Student Number Question 16 (8 marks) Two students, Kim and Ali, performed an experiment to determine the acceleration due to gravity (g) using a simple pendulum consisting of a small mass hanging from a light string. L Their procedure was as follows: 1. Adjust the length of the string (L) to measure 0.08 m. 2. Hold the mass to the side to give a small angular displacement, . 3. Release the mass and measure the time for one period (T). 4. Record the result in a table. 5. Repeat using a string length (L) of 0.09 m and continue until the string length is 0.19 m (going up in 0.01 m increments, using the same initial angular displacement each time). L . Calculate g using the relationship T = 2 g 6. The results are shown in the table: L (m) 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 T (s) 0.57 0.62 0.65 0.67 0.70 0.73 0.76 0.80 0.81 0.84 0.86 0.89 Kim used the data in the table to obtain a mean value for g. Kim s result was g = 9.3 m s 2. Ali used the results to produce the following graph. Ali s line of best fit was used to calculate g. 1.2 1.0 T 2(s2) 0.8 0.6 Ali s line of best t 0.4 0.2 0 0.04 0.08 0.12 0.16 0.20 L (m) Question 16 continues on page 15 14 0.24 Marks Question 16 (continued) (a) Outline TWO changes that could be made to the experimental procedure that would improve its accuracy. 2 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (b) Compare Kim s and Ali s methods of calculating g and identify the better approach. 3 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (c) Calculate the value of g from the line of best fit on Ali s graph. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... End of Question 16 15 3 Marks Question 17 (4 marks) Describe TWO difficulties associated with effective or reliable communications between satellites and Earth. ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... 16 Board of Studies NSW 2002 4 2002 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Marks Question 18 (3 marks) The graph shows the percentage transmission of electromagnetic radiation of various wavelengths through the Earth s atmosphere. % transmission through atmosphere 100 80 60 40 20 0 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 101 102 Wavelength (m) The Voyager II spacecraft transmits electromagnetic radiation to Earth at a frequency of 2295 MHz. Use the graph to justify the use of this transmission frequency. ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... 435 17 3 Marks Question 19 (4 marks) In one of Einstein s famous thought experiments, a passenger travels on a train that passes through a station at 60% of the speed of light. According to the passenger, the length of the train carriage is 22 m from front to rear. (a) A light in the train carriage is switched on. Compare the velocity of the light beam as seen by the passenger on the train and a rail worker standing on the station platform. 1 ............................................................................................................................... ............................................................................................................................... (b) Calculate the length of the carriage as observed by the rail worker on the station platform. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 18 3 Marks Question 20 (3 marks) A student is investigating inertial and non-inertial frames of reference. The student carries out a series of activities on a boat floating on a large, calm lake. The boat remained level during these activities. Each activity and the student s observed results are recorded in the table. Activity Observation Dropped a ball from a set height Ball fell vertically with increasing velocity Rolled a ball from one side of the boat to the other Ball rolled across the floor with a constant velocity Rolled a ball from the back of the boat towards the front of the boat Ball rolled across the floor with a constant velocity Justify the student s conclusion that: The boat can be regarded as an inertial frame of reference . ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... 19 3 Marks Question 21 (4 marks) In his science fiction novel From the Earth to the Moon, Jules Verne describes how to launch a capsule from a cannon to land on the moon. To reach the moon, the capsule must leave the cannon with a speed of 1.06 104 m s 1. The cannon has a length of 215 m, over which the capsule can be assumed to accelerate constantly. (a) Calculate the magnitude of the acceleration required to achieve this speed using this cannon. 2 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (b) Referring to your answer in part (a), explain why Jules Verne s method is unsuitable for sending a living person to the moon. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 20 Board of Studies NSW 2002 2 2002 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Marks Question 22 (6 marks) Two types of generator are shown in the diagram. B To external circuit B To external circuit Generator P (a) Generator Q What is the function of the brush in a generator? 1 ............................................................................................................................... ............................................................................................................................... (b) Which of these generators is a DC generator? Justify your choice. 3 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (c) Outline why AC generators are used in large-scale electrical power production. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 436 21 2 Marks Question 23 (7 marks) (a) 1 State Lenz s law. ............................................................................................................................... ............................................................................................................................... (b) When the metal rod is moved upwards through the magnetic field as shown in the diagram, an emf is induced between the two ends. Direction of motion S S N End Y N End X (i) Which end of the rod is negative? 1 ................................................................................................................... (ii) Explain how the emf is produced in the rod. 3 ................................................................................................................... ................................................................................................................... ................................................................................................................... ................................................................................................................... ................................................................................................................... ................................................................................................................... (c) Explain how the principle of induction can be used to heat a conductor. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 22 Board of Studies NSW 2002 2 2002 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Marks Question 24 (8 marks) In terms of band structures and relative electrical resistance, describe the differences between a conductor, an insulator and a semiconductor. ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... 437 23 8 Marks Question 25 (6 marks) A pair of parallel metal plates, placed in a vacuum, are separated by a distance of 5.00 10 3 m and have a potential difference of 1000 V applied to them. (a) Calculate the magnitude of the electric field strength between the plates. 1 ............................................................................................................................... ............................................................................................................................... (b) Calculate the magnitude of the electrostatic force acting on an electron between the plates. 1 ............................................................................................................................... ............................................................................................................................... (c) A beam of electrons is fired with a velocity of 3.00 106 m s 1 between the plates as shown. A magnetic field is applied between the plates, sufficient to cancel the force on the electron beam due to the electric field. + 1000 V Beam of electrons Calculate the magnitude and direction of the magnetic field required between the plates to stop the deflection of the electron beam. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 24 4 Marks Question 26 (3 marks) Some materials become superconductors when cooled to extremely low temperatures. Identify THREE properties of superconductors. 3 ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... Question 27 (4 marks) There are two areas in which energy savings can be made by the use of superconductors. These are: electricity generation and transmission; transportation. Discuss how energy savings can be achieved in each of these two areas. ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... 25 4 BLANK PAGE 26 Board of Studies NSW 2002 2002 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Section II 25 marks Attempt ONE question from Questions 28 32 Allow about 45 minutes for this section Answer the question in a writing booklet. Extra writing booklets are available. Show all relevant working in questions involving calculations. Pages Question 28 Question 29 Medical Physics ................................................................... 30 31 Question 30 Astrophysics ......................................................................... 32 33 Question 31 From Quanta to Quarks ....................................................... 34 35 Question 32 438 Geophysics ........................................................................... 28 29 The Age of Silicon ............................................................... 36 37 27 Marks Question 28 Geophysics (25 marks) (i) Describe Earth s current magnetic field. 2 (ii) (a) The diagram represents the magnetic anomalies of the oceanic crust located near the island of Iceland in the mid-Atlantic. 4 Mid-ocean ridge Explain the origin of the pattern of magnetic anomalies on either side of the mid-ocean ridge. (b) 2 (i) Recount the steps involved in gravity data reduction. (ii) The diagram shows the surface height and gravity anomaly curve in a region near the Red Sea. Gravity anomaly Height (metres) WEST EAST 2000 +100 1000 X 0 Y Sea level 100 0 100 200 300 400 500 600 km Key Land mass Red Sea Gravity anomaly curve (1) Propose reasons for the difference in the gravity anomaly at the locations marked X and Y. 2 (2) Predict the likely variation in orbital path for a satellite moving from West to East across the region shown in the diagram. 2 Question 28 continues on page 29 28 Marks Question 28 (continued) (c) The graph shows the travel time for P waves and S waves at different surface distances from an earthquake epicentre. 25 Travel time (minutes) P' P'' 20 S P'' 15 10 P 5 0 5000 10 000 15 000 20 000 Surface distance from epicentre (km) (i) 2 (ii) Account for the absence of S waves at distances greater than 11 000 km from the earthquake epicentre. 2 (iii) (d) Contrast the properties of P waves and S waves. Identify how this graph supports the existence of a solid inner core of Earth. 2 Assess the application and advantages of TWO geophysical methods in mineral exploration. 7 End of Question 28 29 Marks Question 29 Medical Physics (25 marks) Briefly describe how an endoscope works. 2 Explain how a computed axial tomography (CAT) scan is produced. 4 Technetium 99m is an artificial isotope which is frequently used to obtain a scan of the human body. (i) Using the graph, determine the half life of technetium 99m. 1 100 % of technetium 99m remaining in sample (b) (i) (ii) (a) 75 50 25 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Time (hours) (ii) A patient is given an injection containing 6.0 10 18 kg of technetium 99m. The scan is taken four hours after the injection. 2 How much technetium 99m remains undecayed when the scan is taken? (Give your answer in kilograms.) (iii) Propose reasons why scans are best taken between two and five hours after injection of this radioisotope. Question 29 continues on page 31 30 3 Marks Question 29 (continued) (c) The diagrams shown are an MRI of the human upper arm, an X-ray of a human hand and a CAT scan of the human pelvis (hip bone) as seen in cross-section from above. MRI of human upper arm Procedure time: 30 60 minutes X-ray of human hand Procedure time: 5 minutes CAT scan of human pelvis (hipbone) Procedure time: 40 minutes (i) Identify TWO advantages of MRI scans over CAT scans. 2 (ii) A patient is brought into a hospital out-patients ward complaining of a severe headache. He explains that he hit his head while playing football. The doctor thinks that the patient may be suffering from a fractured skull. 2 Explain why the doctor would order an X-ray to confirm the diagnosis of a fractured skull. (iii) The patient, now diagnosed with a fractured skull, complains of other symptoms that may indicate that he is suffering from brain damage. 2 Suggest ONE additional scan which may be required to confirm this diagnosis. Justify your choice. (d) Assess the impact of medical applications based on ultrasound and the magnetic field of particles within the body on modern society. End of Question 29 31 7 Marks Question 30 Astrophysics (25 marks) (a) (i) 2 The star Algol is an eclipsing binary as viewed from Earth. Describe the observations made by astronomers to identify a star as an eclipsing binary. (ii) 4 Binary stars are important in determining stellar masses. Explain how the total mass of a binary star system can be calculated. (b) The table gives information about various nearby stars. Star Distance (parsecs) Apparent visual magnitude Colour Index Proxima Centauri 1.29 11.01 1.90 Barnard s Star 1.82 9.54 1.74 Lalande 21185 2.55 7.49 1.51 Ross 154 2.97 10.37 1.75 (i) Which star from the table is the most blue in colour? 1 (ii) Calculate how much brighter Ross 154 is than Proxima Centauri when viewed from Earth. 2 (iii) Sketch a labelled diagram indicating the information required to use the trigonometric parallax method to determine the distance to Barnard s Star. 3 Question 30 continues on page 33 32 Marks Question 30 (continued) (c) An H-R diagram can be used to show the evolutionary track of stars. R Q 104 103 ma in qu 102 se nc e Solar luminosities 105 10 1 e S 100 000 P 30 000 10 000 3000 Surface Temperature (K) (i) 2 (ii) A white dwarf is considered to be in a stable condition. Explain why a white dwarf does not continue to shrink in size. 2 (iii) (d) Select the position P, Q, R or S on the H-R diagram in which white dwarfs would be found. Justify your choice. Describe ONE nuclear reaction taking place in a star located on the main sequence. 2 Discuss how the development of adaptive optics and at least one other development have improved resolution and sensitivity of ground based astronomy. 7 End of Question 30 33 Marks Question 31 From Quanta to Quarks (25 marks) (i) (b) Describe Davisson and Germer s experiment that confirmed the de Broglie hypothesis of wave-particle duality. 2 (ii) (a) Explain the stability of the electron orbits in the Bohr atom, using de Broglie s hypothesis. 4 The diagram shows the kinetic energy distribution of the electrons emitted in the -decay of 210 Bi into 210 Po. The energy released during -decay depends on the 83 84 mass defect in the transmutation, as it does in nuclear fission. Relative number of electrons 9 Nucleus or particle 8 7 Mass (amu) 210Bi 5 4 209.938 57 210Po 6 209.936 78 e 0.000 55 3 2 End-point Ek(max) 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Kinetic energy of electrons, Ek (MeV) (i) Identify the scientist who suggested that the existence of the neutrino relates to the need to account for the energy distribution of electrons emitted in -decay. 1 (ii) Use the data to calculate the mass defect in the -decay of (Assume that the neutrino is a massless particle.) 210 83 Bi. 2 (iii) Account for the energy distribution of electrons emitted in this -decay. 3 Question 31 continues on page 35 34 Marks Question 31 (continued) (c) The diagram represents the four spectral lines in the visible region of the hydrogen spectrum known as the Balmer Series. H H H H 410 434 486 656 NOT TO SCALE Wavelength (nm) (i) 3 (ii) (d) Explain how the Balmer Series provides strong experimental evidence in support of Bohr s model of the hydrogen atom. Calculate the wavelength of the next line in the Balmer Series. 3 Discuss how neutron scattering and ONE other process have been used to increase our understanding of the structure of matter. End of Question 31 35 7 Marks Question 32 The Age of Silicon (25 marks) Describe the structure of an LED. 2 Explain why, in some applications, it is preferable to use an LED rather than an ordinary light source. 4 (i) The diagram shows how the resistance of a light-dependent resistor (LDR) depends on the intensity of the light falling on it (illumination). 2000 1800 1600 LDR resistance ( ) (b) (i) (ii) (a) 1400 1200 1000 800 600 400 200 0 0 2 4 6 Illumination (lux) 8 10 (1) Describe qualitatively how the resistance of this LDR changes as the illumination increases. (2) What is the resistance of this LDR when the intensity of light falling on it is 4 lux? (ii) 1 1 This LDR is connected in series with the coil of a relay to a 12 volt power supply as shown. 4 12 V LDR Coil of relay This relay switches on when the current through the coil reaches 4.8 mA. When connected in this circuit, the relay switches on when the illumination on the LDR is 2 lux. Calculate the resistance of the coil of the relay. Question 32 continues on page 37 36 Marks Question 32 (continued) (c) The table gives the output voltage of an amplifier as a function of the input voltage. Input voltage (microvolt) 300 250 200 150 100 50 0 50 100 150 200 250 300 Output voltage (volt) 8.0 8.0 8.0 6.0 4.0 2.0 0.0 2.0 4.0 6.0 8.0 8.0 8.0 (i) 2 (ii) Calculate the gain of this amplifier. 2 (iii) (d) Describe the properties of an ideal amplifier. Propose why this amplifier is not suitable for input signals that vary from 250 microvolt to +250 microvolt. 2 Early computers used thermionic devices. Later computers used transistors and today computers use integrated circuits. Discuss the impact and limitations of these developments. 7 End of paper 37 BLANK PAGE 38 Board of Studies NSW 2002 2002 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics DATA SHEET Charge on the electron, qe 1.602 10 19 C Mass of electron, me 9.109 10 31 kg Mass of neutron, mn 1.675 10 27 kg Mass of proton, mp 1.673 10 27 kg Speed of sound in air 340 m s 1 Earth s gravitational acceleration, g 9.8 m s 2 Speed of light, c 3.00 108 m s 1 Magnetic force constant, k 0 2 2.0 10 7 N A 2 Universal gravitational constant, G 6.67 10 11 N m2 kg 2 Mass of Earth 6.0 1024 kg Planck s constant, h 6.626 10 34 J s Rydberg s constant, RH 1.097 107 m 1 Atomic mass unit, u 1.661 10 27 kg 931.5 MeV/ c 2 1 eV Density of water, 1.00 103 kg m 3 Specific heat capacity of water 439 1.602 10 19 J 4.18 103 J kg 1 K 1 39 FORMULAE SHEET c = f Intensity Gm1 m2 F= r2 1 d2 r3 T2 v1 sin i = v2 sin r GM = 4 2 m1 + m2 = E= R= F q 4 2 r 3 GT 2 d M = m 5 log 10 V I IA P = VI = 100 IB (mB mA ) Energy = VIt d= 1 p r t where r = displacement vav = F = BIl sin aav F v v u = = t t l F = ma Ek = =k I1 I2 d = Fd 12 mv 2 = nBIA cos p = mv Vp p = Ft Vs 40 = np ns 5 FORMULAE SHEET Ep = F = qvB sin Gm1 m2 r E= v = u + at E = hf v x 2 = ux 2 v y 2 = uy 2 + 2 ay y Z = v x = ux t Ir Io 1 2 y = uy t + ay t 2 s u+v = t 2 [ Z2 Z1 ] 2 = [ Z2 + Z1 ] 2 1 1 1 = RH 2 2 n f ni lv = lo 1 tv = V d v2 c2 = h mv to 1 v2 c2 Amplifier gain = Ao = 41 Vo V+ V Vout Vin 42 Yttrium 57 71 56 Ba 137.3 Barium 88 Ra [226.0] Radium Caesium 87 Fr [223.0] Francium Rutherfordium 104 Rf [261.1] Hafnium 90 Th 232.0 Thorium Actinides 89 Ac [227.0] Actinium Protactinium 91 Pa 231.0 Praseodymium 59 Pr 140.9 Dubnium 105 Db [262.1] Tantalum 73 Ta 180.9 Niobium Uranium 92 U 238.0 Neodymium 60 Nd 144.2 Seaborgium 106 Sg [263.1] Tungsten 74 W 183.8 Molybdenum Neptunium 93 Np [237.0] Promethium 61 Pm [146.9] Bohrium 107 Bh [264.1] Rhenium 75 Re 186.2 Technetium 43 Tc [98.91] Manganese Plutonium 94 Pu [239.1] Samarium Americium 95 Am [241.1] Europium 63 Eu 152.0 Curium 96 Cm [244.1] Gadolinium 64 Gd 157.3 Ununnilium Meitnerium Hassium 62 Sm 150.4 110 Uun 109 Mt [268] 108 Hs [265.1] Platinum 78 Pt 195.1 Palladium 46 Pd 106.4 Nickel 28 Ni 58.69 Iridium 77 Ir 192.2 Rhodium 45 Rh 102.9 Cobalt 27 Co 58.93 111 Uuu Gold 79 Au 197.0 Silver 47 Ag 107.9 Copper 29 Cu 63.55 Berkelium 97 Bk [249.1] Terbium 65 Tb 158.9 Unununium Name of element Osmium 76 Os 190.2 Ruthenium 44 Ru 101.1 Iron 26 Fe 55.85 Atomic Weight Symbol of element Californium 98 Cf [252.1] Dysprosium 66 Dy 162.5 Ununbium 112 Uub Mercury 80 Hg 200.6 Cadmium 48 Cd 112.4 Zinc 30 Zn 65.39 Einsteinium 99 Es [252.1] Holmium 67 Ho 164.9 113 Thallium 81 Tl 204.4 Indium 49 In 114.8 Gallium 31 Ga 69.72 Aluminium 13 Al 26.98 Boron 5 B 10.81 Fermium 100 Fm [257.1] Erbium 68 Er 167.3 Ununquadium 114 Uuq Lead 82 Pb 207.2 Tin 50 Sn 118.7 Germanium 32 Ge 72.61 Silicon 14 Si 28.09 Carbon 6 C 12.01 Mendelevium 101 Md [258.1] Thulium 69 Tm 168.9 115 Bismuth 83 Bi 209.0 Antimony 51 Sb 121.8 Arsenic 33 As 74.92 Phosphorus 15 P 30.97 Nitrogen 7 N 14.01 Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes 237Np and 99Tc. Cerium Lanthanum Lanthanides 57 58 La Ce 138.9 140.1 Actinides 89 103 Lanthanides 72 Hf 178.5 Zirconium 42 Mo 95.94 Chromium Strontium 41 Nb 92.91 Vanadium 55 Cs 132.9 40 Zr 91.22 Rubidium Titanium 39 Y 88.91 38 Sr 87.62 Scandium Calcium 37 Rb 85.47 25 Mn 54.94 Potassium 24 Cr 52.00 20 Ca 40.08 19 K 39.10 23 V 50.94 Magnesium Sodium 22 Ti 47.87 12 Mg 24.31 11 Na 22.99 21 Sc 44.96 Beryllium Lithium Gold 79 Au 197.0 3 Li 6.941 Atomic Number KEY 4 Be 9.012 PERIODIC TABLE OF THE ELEMENTS Hydrogen 1 H 1.008 Nobelium 102 No [259.1] Ytterbium 70 Yb 173.0 Ununhexium 116 Uuh Polonium 84 Po [210.0] Tellurium 52 Te 127.6 Selenium 34 Se 78.96 Sulfur 16 S 32.07 Oxygen 8 O 16.00 Lawrencium 103 Lr [262.1] Lutetium 71 Lu 175.0 117 Astatine 85 At [210.0] Iodine 53 I 126.9 Bromine 35 Br 79.90 Chlorine 17 Cl 35.45 Fluorine 9 F 19.00 Ununoctium 118 Uuo Radon 86 Rn [222.0] Xenon 54 Xe 131.3 Krypton 36 Kr 83.80 Argon 18 Ar 39.95 Neon 10 Ne 20.18 Helium 2 He 4.003

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 

Additional Info : New South Wales Higher School Certificate Physics 2002
Tags : new south wales higher school certificate physics 2002, nsw hsc online physics, nsw hsc physics, nsw hsc physics syllabus, physics model exam papers, physics sample papers, physics course., australia new south wales, nsw hsc online, nsw hsc past papers, nsw hsc papers, nsw hsc syllabus, nsw board of studies, higher school certificate new south wales, nsw australia, hsc syllabus, nsw hsc exams, nsw hsc question papers, nsw hsc solved question papers, nsw hsc previous exam papers, nsw university.  

© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

nsw_hsc chat