Trending ▼   ResFinder  

NSW HSC 2009 : PHYSICS

38 pages, 83 questions, 0 questions with responses, 0 total responses,    0    0
nsw_hsc
  
+Fave Message
 Home > nsw_hsc >

Formatting page ...

2009 H I G H E R S C H O O L C E R T I F I C AT E E X A M I N AT I O N Physics Total marks 100 General Instructions Reading time 5 minutes Working time 3 hours Write using black or blue pen Draw diagrams using pencil Board-approved calculators may be used A data sheet, formulae sheets and Periodic Table are provided at the back of this paper Write your Centre Number and Student Number at the top of pages 9, 11, 13, 15, 19 and 21 S ection I Pages 2 22 75 marks This section has two parts, Part A and Part B Part A 15 marks Attempt Questions 1 15 Allow about 30 minutes for this part Part B 60 marks Attempt Questions 16 27 Allow about 1 hour and 45 minutes for this part S ection II Pages 23 33 25 marks Attempt ONE question from Questions 28 32 Allow about 45 minutes for this section 433 Section I 75 marks Part A 15 marks Attempt Questions 1 15 Allow about 30 minutes for this part Use the multiple-choice answer sheet for Questions 1 15. 1 A fast-moving space probe passes close to a planet. During its journey, how does the gravitational field of the planet affect the speed and direction of the probe? Speed (A) Remains constant Remains constant (B) Remains constant Changes (C) Changes Changes (D) 2 Direction Changes Remains constant A satellite is moving in a circular orbit of radius 7.0 106 m around Earth. If the speed of the satellite is 8.1 103 m s 1, what is its centripetal acceleration? (A) 9.4 m s 2 (B) 9.8 m s 2 (C) 5.6 1025 m s 2 (D) 3.9 1032 m s 2 3 A satellite is moved from a geostationary orbit to a higher orbit. Which statement about the orbit change is correct? (A) During the move the gravitational potential energy decreases. (B) The change in gravitational potential energy is independent of the mass of the satellite. (C) The work done is the difference between the gravitational potential energy of the higher orbit and that of the geostationary orbit. (D) The work done is the energy required to move the satellite, which is in the gravitational field, from a very large distance away, to the higher orbit. 2 4 A device launches two identical balls (x and y) simultaneously in a horizontal direction from the same height. The results are shown. Launch device NOT TO SCALE x y Which statement correctly describes what happens? (A) x hits the ground before y as it is closer to the launch site. (B) y hits the ground before x as it has a higher launch velocity. (C) x and y hit the ground simultaneously with the same velocity. (D) x and y hit the ground simultaneously with different velocities. 5 During a lunar eclipse, Earth moves between the Sun and the Moon. NOT TO SCALE Sun Earth Moon What happens to the force exerted by the Sun on the Moon? (A) It increases. (B) It decreases. (C) It remains unchanged. (D) It depends on the closeness of Earth to the Moon. 3 6 Which of the following would increase the output of a simple DC generator? (A) Increasing the rotation speed of the rotor (B) Reducing the number of windings in the coil (C) Using slip rings instead of a split ring commutator (D) Wrapping the windings around a laminated, aluminium core 7 A type of car speedometer consists of a rotating bar magnet which produces eddy currents in a copper disc. A model of this is shown. N Bar magnet S SIDE VIEW Copper disc Axle As the magnet begins to rotate, in which direction does the disc move? (A) Toward the magnet (B) Away from the magnet (C) Rotates in the same direction as the magnet (D) Rotates in the opposite direction to the magnet 8 What is an essential requirement for the operation of a step-down transformer? (A) A laminated iron core (B) A non-conducting core (C) A magnetic interaction between the primary and secondary coils (D) An electrical connection between the primary and secondary coils 4 9 A thin solid conductor with sides PQRS is moving at constant velocity v, at right angles to a uniform magnetic field B, directed into the page as shown. B Q P R S v Which side of the conductor has the greatest concentration of electrons? (A) P (B) Q (C) R (D) S 10 Which option best identifies why germanium was replaced by silicon in the semiconductor industry? Germanium Silicon (A) Remains a useful semiconductor at higher temperatures Less abundant (B) Less abundant Remains a useful semiconductor at higher temperatures (C) Remains a useful semiconductor at higher temperatures More abundant (D) More abundant Remains a useful semiconductor at higher temperatures 5 11 The diagram shows a DC motor with a constant current flowing to the rotor. B A N S Which pair of graphs best describes the behaviour of the force F on wire AB, and the torque on the rotor as functions of time t ? (A) 0 (B) t t 0 t t 0 t F 0 0 F 0 (D) t F 0 (C) F t 0 t 6 12 Which of the following diagrams best represents the energy bands in p type and n type semiconductors? p type n type (A) Conduction band Valence band Valence band Conduction band (B) Conduction band Valence band Valence band Conduction band (C) Conduction band Conduction band donor level Valence band (D) Valence band Conduction band Conduction band Valence band 13 acceptor level acceptor level donor level Valence band Why does superconductivity occur in certain materials at low temperatures? (A) At low temperatures there are no lattice vibrations. (B) Some pairs of electrons experience net attraction at low temperatures. (C) The materials are alloys and alloys lose all resistance at low temperatures. (D) At low temperatures the materials become magnetic and this reduces the scattering of electron pairs. 7 14 Blue light is found to cause photoelectric emission from a sodium surface but not from a platinum surface. Which of the following best accounts for this difference? (A) Platinum does not absorb photons. (B) Platinum has more electrons than sodium. (C) More energy is needed to remove an electron from a platinum surface. (D) The intensity of the blue light is not high enough to remove electrons from the platinum surface. 15 The diagram shows two parallel plates with opposite charges. P, Q and R represent distances from the positive plate. + P Q R Which of the following graphs describes the electric field strength, E, between the plates? (A) (B) E E Distance P (C) Q Distance P E (D) Q R PQ R R E Distance Distance P Q R 8 Board of Studies NSW 2009 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I (continued) Part B 60 marks Attempt Questions 16 27 Allow about 1 hour and 45 minutes for this part Student Number Answer the questions in the spaces provided. Show all relevant working in questions involving calculations. Question 16 (3 marks) NASA recently landed a space probe on an asteroid found between the orbits of Earth and Mars. The 500 kg space probe had a weight of 2.5 N when it landed on the asteroid. (a) What would be the weight of this space probe on the surface of Earth? 1 ............................................................................................................................... ............................................................................................................................... (b) Before landing on the asteroid, the space probe was placed in an orbit with radius 50 km. The orbital period was 5.9 104 s. What was the mass of the asteroid? ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 434 9 2 Question 17 (5 marks) (a) Using labelled diagrams, show how a first-hand investigation could be performed to distinguish between an inertial and a non-inertial frame of reference. 2 (b) Explain how inertial and non-inertial frames of reference relate to the principle of relativity. 3 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 10 Board of Studies NSW 2009 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Question 18 (4 marks) The nearest galaxy to ours is the Large Magellanic Cloud, with its centre located 1.70 105 light years from Earth. Assume you are in a spacecraft travelling at a speed of 0.99999 c toward the Large Magellanic Cloud. (a) In your frame of reference, what is the distance between Earth and the Large Magellanic Cloud? 2 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (b) In your frame of reference, how long will it take you to travel from Earth to the Large Magellanic Cloud? ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 435a 11 2 Question 19 (6 marks) An electron is emitted from a mineral sample, and travels through aperture A into a spectrometer at an angle of 60 with a speed of 6.0 106 m s 1 . 100 V 10 cm NOT TO SCALE e A aperture 60 D detector 0V sample (a) Calculate the magnitude and direction of the force experienced by the electron inside the spectrometer. 3 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (b) The electron experiences constant acceleration and eventually strikes the detector, D. What is the time taken for the electron to travel from A to D? ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 12 Board of Studies NSW 2009 3 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Question 20 (4 marks) Draw a table to summarise the energy transformations and transfers for three household appliances. Each appliance must have a different type of useful energy output. Include the name of the appliance, its use and the transformation/transfer of energy involved. 435b 13 4 Question 21 (6 marks) A rectangular wire loop is connected to a DC power supply. Side X of the loop is placed next to a magnet. The loop is free to rotate about a pivot. 30 30 cm 30 30 cm orth N Y X + m 20 c NOT TO SCALE pivot When the power is switched on, a current of 20 A is supplied to the loop. To prevent rotation, a mass of 40 g can be attached to either side X or side Y of the loop. (a) On which side of the loop should the mass be attached to prevent rotation? 1 ............................................................................................................................... (b) Calculate the torque provided by the 40 g mass. 2 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (c) Calculate the magnetic field strength around side X. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 14 Board of Studies NSW 2009 3 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Question 22 (4 marks) How did the invention of the transistor transform the way communication occurs in Australia? In your answer, refer to the technology that the transistor replaced. ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... 436a 15 4 Question 23 (6 marks) Two identical wires, W1 and W2, each 2.5 m in length, are positioned as shown. They carry identical currents in the direction indicated. W1 W2 NOT TO SCALE 5 cm cm (a) Identify the direction of the force which W2 experiences as a result of the current in W1. 1 ............................................................................................................................... (b) Calculate the current in each wire, given that the two wires experience a force of 6.9 10 4 N. 2 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (c) A third wire, W3 , carrying a smaller current, is now placed as shown. W1 W2 W3 NOT TO SCALE 5 cm cm 8 cm cm Explain qualitatively the forces on W2 as a result of the currents in W1 and W3. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 16 3 Question 24 (4 marks) An experiment was conducted to investigate the flexibility* and strength** of different types of rubber bands, all with the same initial length. A mass was attached to each band and the extension was measured. Masses were gradually increased, and the extensions measured until each band broke. The photograph was taken during the experiment. The results are summarised in the graph. 0.7 Band E Extension (m) 0.6 Band F 0.5 0.4 0.3 Band G 0.2 Band H 0.1 0 0 1 2 Mass (kg) 3 * Flexibility: The more flexible the rubber band, the greater its extension for a given mass. ** Strength: The stronger the rubber band, the more mass it is able to hold before breaking (a) Which rubber band is the most flexible? Justify your answer with reference to the graph. 2 ............................................................................................................................... ............................................................................................................................... (b) Identify the strongest rubber band and state the mass range in which the extension appears to be directly proportional to the attached mass. ............................................................................................................................... ............................................................................................................................... 17 2 BLANK PAGE 18 Board of Studies NSW 2009 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Question 25 (5 marks) In the Large Hadron Collider (LHC), the particle beams are steered using magnetic fields, as shown. Superconducting electromagnet Particle path (a) Two particles with the same mass and speed are travelling through the LHC in opposite directions. 2 What can be deduced about the charge on the particles? ............................................................................................................................... ............................................................................................................................... (b) During a test run, a proton travels with a speed of 1.0 107 m s 1 around the LHC. The radius of curvature of its path is 4.2 m. Calculate the magnetic field strength. ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... 436b 19 3 Question 26 (6 marks) In the distribution of electricity, the overall energy losses between the power plant and users can easily be between 8% and 15%, which suggests that there is still some room to improve efficiency. Analyse this statement. In your analysis, you must refer to existing sources of energy loss, and a possible new technology to minimise such loss. ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... ......................................................................................................................................... 20 Board of Studies NSW 2009 6 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Centre Number Section I Part B (continued) Student Number Question 27 (7 marks) In an experiment to investigate the photoelectric effect, light is shone onto a silver surface and the resulting maximum electron kinetic energy is measured and recorded. Light wavelength (nm) 250 0.25 215 1.08 187 1.90 167 2.73 150 (a) Electron kinetic energy (eV) 3.56 Determine the frequency of the highest energy photons used in the experiment. 2 ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... (b) What effect would changing the intensity of the light have on the measured electron kinetic energy? ............................................................................................................................... ............................................................................................................................... Question 27 continues on page 22 437 21 1 Question 27 (continued) (c) With reference to the photoelectric effect, and the semiconductors shown in the diagram, explain the operation of a solar cell. Light n type silicon p type silicon Load ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... End of Question 27 22 Board of Studies NSW 2009 4 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics Section II 25 marks Attempt ONE question from Questions 28 32 Allow about 45 minutes for this section Answer the question in a writing booklet. Extra writing booklets are available. Show all relevant working in questions involving calculations. Pages Question 28 Question 29 Medical Physics ................................................................... 26 27 Question 30 Astrophysics ......................................................................... 28 29 Question 31 From Quanta to Quarks ....................................................... 30 31 Question 32 438 Geophysics ........................................................................... 24 25 The Age of Silicon ............................................................... 32 33 23 Question 28 Geophysics (25 marks) (a) Radiation is used to obtain information about a surface from a distance. (i) 2 (ii) How would the results demonstrate the relationship between the nature of the surface and the radiation reflected? 2 (iii) (b) Use a labelled diagram and text to outline a first-hand investigation to demonstrate the relationship between the nature of a surface and the radiation reflected. Use a specific example to show how radiation can be used to provide information about Earth from a distance. 2 A pendulum was used to determine the acceleration due to gravity, g, at the base of a mountain. The period, T, was 2.00 s, and the length of the string, l, was 1.00 m. (i) 2 Calculate g, using the formula, T = 2 l . g (ii) Calculate the radius of Earth using this value of g. 2 (iii) The pendulum was moved to a different location where there are no mountains. The same value of T was obtained. 3 Explain this observation. Question 28 continues on page 25 24 Question 28 (continued) (c) Seismograms from three different geophysical stations showing the records of a small earthquake somewhere in California are shown. Time is marked on each seismogram by offsets in the records. The interval between the offsets is 1 minute. Lick Observatory Palo Alto San Francisco 1 minute Department of Earth and Environmental Sciences (i) 3 (ii) (d) Explain the features of the graphs and what information can be deduced. Describe how seismic methods are used in the search for oil and gas. 3 Name THREE geophysical techniques, and explain how each of these provides evidence to support the claim that Earth is dynamic. End of Question 28 25 6 Question 29 Medical Physics (25 marks) (a) (i) In X-ray images, the small intestine is not normally visible. 2 Explain how the use of a contrast medium, for example a barium meal, allows the small intestine to be seen. (ii) (b) Using text and a labelled diagram, explain how X-rays are produced for medical imaging. 4 (i) Given the velocity of sound in blood is 1.53 103 m s 1, and blood has a density of 1.05 103 kg m 3, calculate the acoustic impedance of blood. 1 (ii) Ultrasound can pass from blood into a variety of materials. What happens to the incident pulse when it passes into materials of increasing acoustic impedance? 1 (iii) Explain how a piezoelectric crystal can be used as a producer and receiver of ultrasound waves. 4 Question 29 continues on page 27 26 Question 29 (continued) (c) (i) Have a CAT scan live longer! 4 Can the claim made in this statement be justified? In your answer refer to the properties and uses of CAT scans. (ii) In this PET image a chemical tracer has been used to measure glucose metabolism in a patient. 3 Awaiting Copyright Explain how this image has been produced, including the physics involved. (d) Describe the sequence of events and associated processes of physics by which an image is produced using magnetic resonance imaging. End of Question 29 27 6 Question 30 Astrophysics (25 marks) (i) Distinguish between the terms resolution and sensitivity as used in astrophysics. 2 (ii) (a) Interferometry and active optics are techniques that can be used to improve the resolution and/or sensitivity of ground based telescopes. 4 Explain why only one of these techniques is useful in improving the resolution and sensitivity of radio telescopes. (b) (i) Describe the modelling process used in a computer simulation which draws a light curve for an eclipsing binary star system. 2 (ii) Two stars in a visual binary system have an orbital period of 2.1 108 s and are determined to be 7.2 108 km apart. 2 Calculate the combined mass of the stars. (iii) The spectra below show absorption lines for a variable pair of spectroscopic binary stars at two different times, Time 1 and Time 2. Each spectrum contains the absorption lines from both stars. Time 1 Violet Red 1 2 34 5 6 78 Time 2 Violet Red Explain why there are differences in the spectra. Question 30 continues on page 29 28 3 Question 30 (continued) (c) (i) A star was found to have a visual magnitude (V) of 2.9 and a photographic magnitude (B) of 4.6. 1 Will the star be more blue or more red in colour? How can the colour index (B V) of a star be measured in an observatory? 2 (d) Describe the advantages of using photoelectric technologies over photographic methods in photometry. 3 (e) A possible evolutionary path of a star is shown on the Hertsprung-Russell (H-R) diagram. 6 (ii) 10 10 4 0 10 2 +5 1 +10 10 2 +15 O Luminosity Absolute magnitude 5 10 4 B A F G K M Spectral type Describe the sequence of events and the associated physical processes a star undergoes in moving from to to . End of Question 30 29 Question 31 From Quanta to Quarks (25 marks) (a) Marsden and Geiger conducted an experiment in which they fired alpha particles at a thin gold foil. Most of the particles passed straight through. (i) 2 (ii) (b) Describe how Rutherford s model of the atom explained these results. Describe TWO problems associated with Rutherford s model and how these were explained by Bohr s model of the hydrogen atom. 4 (i) Describe de Broglie s proposal that a particle can exhibit both wave and particle properties. 2 (ii) Explain how Davisson and Germer were able to confirm de Broglie s proposal. 3 (iii) Calculate the velocity of an electron that has a wavelength of 3.33 10 10 m. 2 Question 31 continues on page 31 30 Question 31 (continued) (c) (i) Define mass defect. 1 (ii) The energy required to separate all the nucleons within a nucleus is the binding energy. The average binding energy per nucleon is a measure of the stability of a nucleus. 2 The graph shows how average binding energy per nucleon varies with mass number. 16 10 13 Average binding energy per nucleon (J) 8 10 13 0 100 200 Mass number Use the graph to compare the stability of a nucleus of mass number 200 with a nucleus of mass number 50. (d) In 1920, Rutherford suggested the existence of an undiscovered nuclear particle. Explain how Chadwick confirmed Rutherford s prediction using conservation laws. 3 (e) Theories and experiments not only help increase our understanding but also generate new questions. 6 Use the standard model of matter to support this statement. End of Question 31 31 Question 32 The Age of Silicon (25 marks) (a) The following circuit diagram shows the internal design of a 2-bit analogue to digital converter. +5.0 V 0.5 k + 1.0 k 1.0 k + Vt + D2 O1 D1 O0 D0 0.5 k Vin Section: A B C (i) Identify the function of section A of the circuit. 1 (ii) Calculate the voltage Vt . 1 (iii) Are the amplifiers in section B used in an open loop or closed loop configuration? Justify your answer. 2 (iv) Construct a truth table showing the outputs O1 and O0 for each of the possible input states of D0, D1 and D2. 2 Question 32 continues on page 33 32 Question 32 (continued) (b) (i) Compare the function of input and output transducers. 2 (ii) An electronic system monitors conditions in a glasshouse. The system measures sunlight intensity, temperature, and controls an electric watering pump. 5 Copy this table into your writing booklet and complete the table for this system. Sunlight Type of transducer Input or output transducer Outline of operation Temperature Pump D TE T LE E MP OKL O E C G BO B TO RITIN E BL R W TA OU IN Y (c) Outline the differences between digital and analogue signals using the operation of a music CD player as an example. 2 (d) Analyse how the development of the integrated circuit has affected energy consumption. 4 (e) The advancement of silicon-based integrated circuit technology has resulted in progressive miniaturisation and a doubling of circuit performance roughly every 18 months. It is expected that physics limitations will soon halt this progress, requiring a reconceptualisation of the way integrated circuits are constructed. 6 If this reconceptualisation cannot be realised, what would be the likely impact on society? End of paper 33 BLANK PAGE 34 Board of Studies NSW 2009 2 009 HIGHER SCHOOL CERTIFIC ATE EXAMINATION Physics DATA SHEET Charge on electron, qe 1.602 10 19 C Mass of electron, me 9.109 10 31 kg Mass of neutron, mn 1.675 10 27 kg Mass of proton, mp 1.673 10 27 kg Speed of sound in air 340 m s 1 Earth s gravitational acceleration, g 9.8 m s 2 Speed of light, c 3.00 108 m s 1 0 Magnetic force constant, k 2 2.0 10 7 N A 2 Universal gravitational constant, G 6.67 10 11 N m2 kg 2 Mass of Earth 6.0 1024 kg Planck constant, h 6.626 10 34 J s Rydberg constant, R (hydrogen) 1.097 107 m 1 Atomic mass unit, u 1.661 10 27 kg 931.5 MeV/ c 2 1 eV Density of water, 1.00 103 kg m 3 Specific heat capacity of water 439 1.602 10 19 J 4.18 103 J kg 1 K 1 35 FORMULAE SHEET v = f I v2 m1 m2 r 1 v1 Ep = G F = mg d 2 sin i sin r = v x 2 = ux 2 v = u + at E= F q R= V I v y 2 = u y 2 + 2a y y x = ux t 1 2 P = VI y = uy t + ay t 2 Energy = VI t r3 T vav = aav = = GM 4 2 r t F= v v u therefore aav = t t E = mc 2 F = ma a F= 2 mv r G m1 m2 d2 l v = l0 1 2 tv = W = Fs mv = v2 c2 m0 1 p = mv Impulse = Ft 36 c2 t0 1 1 Ek = m v 2 2 v2 v2 c2 FORMULAE SHEET F l I1 I 2 =k 1 p d= d F = BI l sin d M = m 5log 10 = Fd IA IB = nBIA cos Vp Vs = ( mB m A ) m1 + m2 = np ns 4 2r 3 GT 2 1 1 = R 2 2 n f ni 1 F = q vB sin E= = 100 V d = h mv E = hf c = f A0 = Z = v Vout Vin Ir I0 = Z 2 Z1 2 Z 2 + Z1 2 37 Vout Vin = Rf Ri 5 38 22 Ti 47.87 56 Ba 137.3 Barium 88 Ra [226] Radium 55 Cs 132.9 Caesium 87 Fr [223] Francium Rutherfordium 104 Rf [261] Hafnium 72 Hf 178.5 Zirconium 90 Th 232.0 Thorium Actinoids 89 Ac [227] Actinium Protactinium 91 Pa 231.0 Praseodymium 59 Pr 140.9 Dubnium 105 Db [262] Tantalum 73 Ta 180.9 Niobium 41 Nb 92.91 Vanadium 23 V 50.94 Uranium 92 U 238.0 Neodymium 60 Nd 144.2 Seaborgium 106 Sg [266] Tungsten 74 W 183.8 Molybdenum 42 Mo 95.94 Chromium 24 Cr 52.00 27 Co 58.93 Neptunium 93 Np [237] Promethium Plutonium 94 Pu [244] Samarium 62 Sm 150.4 Hassium Bohrium 61 Pm [145] 108 Hs [277] 107 Bh [264] Americium 95 Am [243] Europium 63 Eu 152.0 Meitnerium 109 Mt [268] Iridium Osmium Rhenium Rhodium 77 Ir 192.2 Ruthenium 45 Rh 102.9 Iron 44 Ru 101.1 Cobalt 26 Fe 55.85 Gold 79 Au 197.0 76 Os 190.2 75 Re 186.2 Technetium 43 Tc [97.91] Manganese 25 Mn 54.94 Atomic Weight Atomic Number KEY 111 Rg [272] Gold 79 Au 197.0 Silver 47 Ag 107.9 Copper 29 Cu 63.55 Curium 96 Cm [247] Gadolinium 64 Gd 157.3 Berkelium 97 Bk [247] Terbium 65 Tb 158.9 Darmstadtium Roentgenium 110 Ds [271] Platinum 78 Pt 195.1 Palladium 46 Pd 106.4 Nickel 28 Ni 58.69 Name of element Symbol of element Californium 98 Cf [251] Dysprosium 66 Dy 162.5 Mercury 80 Hg 200.6 Cadmium 48 Cd 112.4 Zinc 30 Zn 65.41 PERIODIC TABLE OF THE ELEMENTS Einsteinium 99 Es [252] Holmium 67 Ho 164.9 Thallium 81 Tl 204.4 Indium 49 In 114.8 Gallium 31 Ga 69.72 Aluminium 13 Al 26.98 Boron 5 B 10.81 Fermium 100 Fm [257] Erbium 68 Er 167.3 Lead 82 Pb 207.2 Tin 50 Sn 118.7 Germanium 32 Ge 72.64 Silicon 14 Si 28.09 Carbon 6 C 12.01 Mendelevium 101 Md [258] Thulium 69 Tm 168.9 Bismuth 83 Bi 209.0 Antimony 51 Sb 121.8 Arsenic 33 As 74.92 Phosphorus 15 P 30.97 Nitrogen 7 N 14.01 Nobelium 102 No [259] Ytterbium 70 Yb 173.0 Polonium 84 Po [209.0] Tellurium 52 Te 127.6 Selenium 34 Se 78.96 Sulfur 16 S 32.07 Oxygen 8 O 16.00 Argon Chlorine Lawrencium 103 Lr [262] Lutetium 71 Lu 175.0 Astatine 85 At [210.0] Iodine 53 I 126.9 Bromine Radon 86 Rn [222.0] Xenon 54 Xe 131.3 Krypton 36 Kr 83.80 18 Ar 39.95 17 Cl 35.45 35 Br 79.90 Neon 10 Ne 20.18 Helium 2 He 4.003 Fluorine 9 F 19.00 For elements that have no stable or long-lived nuclides, the mass number of the nuclide with the longest confirmed half-life is listed between square brackets. The International Union of Pure and Applied Chemistry Periodic Table of the Elements (October 2005 version) is the principal source of data. Some data may have been modified. Cerium Lanthanum Lanthanoids 57 58 La Ce 138.9 140.1 Actinoids 89 103 Lanthanoids 57 71 Yttrium Strontium Rubidium 40 Zr 91.22 39 Y 88.91 Potassium 38 Sr 87.62 20 Ca 40.08 19 K 39.10 37 Rb 85.47 Magnesium Sodium Scandium 12 Mg 24.31 11 Na 22.99 Calcium Beryllium Lithium Titanium 21 Sc 44.96 4 Be 9.012 3 Li 6.941 Hydrogen 1 H 1.008

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 

Additional Info : New South Wales Higher School Certificate Physics 2009
Tags : new south wales higher school certificate physics 2009, nsw hsc online physics, nsw hsc physics, nsw hsc physics syllabus, physics model exam papers, physics sample papers, physics course., australia new south wales, nsw hsc online, nsw hsc past papers, nsw hsc papers, nsw hsc syllabus, nsw board of studies, higher school certificate new south wales, nsw australia, hsc syllabus, nsw hsc exams, nsw hsc question papers, nsw hsc solved question papers, nsw hsc previous exam papers, nsw university.  


© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

nsw_hsc chat