Trending ▼
ICSE
CBSE 10th
ISC
CBSE 12th
CTET
GATE
UGC NET
Vestibulares
ResFinder
ICSE Computer Series Answers
8 pages, 0 questions, 0 questions with responses, 0 total responses
,
0
0
Dimpy Singh
St. Helena's School and Junior College, Pune
10
+Fave
Message
Profile
Timeline
Uploads
Home
>
musicismylife
>
Formatting page ...
Pythagorean Triplets: //Program to print the Pythagorean triplets from 1 to 200 //A Pythagorean triplet is one that satisfies the condition //h*h=b*b+ht*ht for a right-angled triangle public class pythgorean { public void finfPythagorean() { int b,ht,hy; for(b=1; b<=200;b++) { for(ht=1;ht<=200;ht++) { for(hy=1;hy<=200;hy++) { if(ht<b) continue; else if((b*b+ ht*ht)==(hy*hy)) { System.out.println(b+ +ht+ +hy); //delay loop to hold scrolling of output for(int delay=1;delay<=1000000000;delay++){} }//Endelse }//End innermost loop }//End middle loop }//End Outermost loop }//End method }//Endclass Fibonacci Series: A fibonacci series is one in which the next term is the sum of previous two terms eg. 0 1 1 2 3 5 8 //to print the fibonacci series till n terms public class Fibonacci { void func(int n) { int a=0, b=1, c=0, i; System.out.print( a + , + b); for(i=3;i<=n;i++) { c=a+b; System.out.print( , + c); a=b; b=c; } }} Tribonacci Series: A tribonacci series is one in which the sum next term is the sum of previous three terms eg. 0 6 11 20 . package NewRishabh; //to print the tribonacci series till n terms public class Tribonacci { void func(int n) { int a=0, b=1, c= 2, d=0, i; System.out.print( a + , + b + , + c); for(i=4;i<=n;i++) { d=a+b+c; System.out.print( , + d); a=b; b=c; c=d; } } } Print Series 2 -4 6 -8 n terms //to print series 2 -4 6 -8 n terms import java.util.Scanner; public class EvenSeries { public static void main() { Scanner sc=new Scanner(System.in); int c,i=2,n; // c for counter, i for even nos. System.out.print( Enter the number of terms: ); n=sc.nextInt(); System.out.print( \n ); for(c=1; c<=n; c++, i+=2)//to generate n terms of the series { if(i%4==0) System.out.print(-i+ ); else System.out.print(i+ ); }//method ends } }//class ends Print Series 1 -3 5 -7 n terms //to print the series 1 -3 5 -7 n terms class OddSeries { public void findSeries(int n)//to print series { 1 2 3 int i=1, c, f=1;// i for odd nos, c for counter, f for flag for(c=1;c<=n;c++) { if(f%2==0) System.out.print(-i+ ); else System.out.print(i+ ); i+=2; f++; }//loop ends }// method ends }//class ends Print Series 1 12 123 1234 n //to print series 1 12 123 1234 . n terms public class SeriesOfNatural { public void findSeries( int n ) { int s=0, c; // s for terms of series, c for counter to generate n terms for(c=1; c<=n; c++) { s= s*10 + c; System.out.println(s+ ); } }// method ends } // class ends Print Series 1 11 111 111 ..n terms // to print series 1 11 111 1111 ..n terms public class SeriesOfOne { public void findSeries(int n) { int s=0, c; // s for terms of series, c for n terms for ( c=1; c<=n; c++)// to generate n terms { s = s * 10 + 1; System.out.print(s + ); }//for ends }// method ends }//class ends Print First n Natural Numbers and their Cubes in Tabular Form followed by their Sum at the end // to find sum of cubes of natural numbers public class CubeSeries { public void findSeries(int n) { int sum=0,cub=0; System.out.println( Number\t\tCubes\n ); for(int i=1;i<=n; i++) {cub=i*i*i; System.out.println(i+ \t\t +cub); sum+=cub; } System.out.println( \n\nSum of the series : + sum); } } Print Sum of Series 1/1^3 1/2^3 + 1/3^3 .1/n^3 // to find sum of series 1/1^3 1/2^3 + 1/3^3 .1/n^3 public class FracCuNegPosSeries { public void findSeries(int n) { double sum=0; for(int i=1; i<=n ; i++) { if(i% 2==0) sum = sum-(double)1/(i*i*i); else sum = sum + (double)1/(i*i*i); } System.out.println( Sum of the series : +sum); } } Print Sum of the Series 1/1 1/2 1/3 .. 1/n // to find sum of 1/1 1/2 1/3 .. 1/n public class FractionSeries { public void findSeries(int n) { double sum=0; for(int i=1; i<=n; i++) sum+=(double)1/i; System.out.println( sum of the series = +sum); } } Print Sum of Series 1+ (1+3) + (1+3+5) ..(1+3+5+ ..n) //to find sum of 1+ (1+3) + (1+3+5) public class SumPrecOddNum { public void SumPrecOddNum(int n) { int sum=0, tot=0; for(int i=1; i<=n; i+=2) { sum+=i; tot+=sum; } System.out.println( Sum of series = + tot); } } Print Sum of series 1+ (1+2) + (1+2+3) . (1+2+3+ .n) // to find sum of series 1+ (1+2) + (1+2+3) . public class SumPrecNaturalNum { public void findSeries(int n) { int sum=0, tot=0; for(int i=1; i<=n ;i++) { sum+=i; tot+=sum; } System.out.println( sum of the series = +tot); } } Print Sum of Series 1/1^2 + 1/2^2 + 1/3^2 1/n^2 // to find sum of series 1/1^2 + 1/2^2 + 1/3^2 1/n^2 public class FracSqSeries { public void findSeries(int n) { double sum =0; for ( int i=1; i<=n ;i++) sum+=(double)1/i*i; System.out.println( Sum of series = + sum); } } Print Sum Of Series 1/1 1/2 + 1/3 + 1/4 1/n // to find sum of series 1/1 1/2 + 1/3 + 1/4 ..1/n public class FracNegPosSeries { public void findSeries(int n) { double sum=0; for(int i=1 ; i<=n; i++) { if(i%2==0) sum = sum -(double)1/i; else sum = sum +(double)1/i; } System.out.println( Sum of the series = + sum); } } Print Natural Numbers and their Squares till N followed by their Sum // to print natural numbers and their squares followed by their sum public class SquareSeries { public void findSeries(int n) { int sum=0,sq=0; System.out.println( Number\t\tSquare\n ); for(int i=1; i<=n; i++) { sq=i*i; System.out.println(i+ \t\t +sq); sum+=sq;//to find square and accumulate } System.out.println( Sum of the series : + sum); } } Print Sum of Series 1/2 ^2 + 2/3^2 + 3/4^2 + n/(n+1)^2 // to find sum of series 1/2^2 + 2/3^2 + 3/4^2 .. public class FracIncSeries { public void findSeries(int n) { double sum=0; for(int i=1; i<=n; i++) { sum+=(double)i/((i+1)*(i+1)); } System.out.println( Sum of the series = +sum); } } Print Sum of 2 + (2+4) + (2+4+6) (2+4+6+ n) // to find sum of 2 + (2+4) + (2+4+6) public class SumPrecEvenNum { public void SumPrecEvenNum(int n) { int sum=0, tot=0; for(int i=2; i<=n ; i+=2) { sum+=i; tot+=sum; } System.out.println( Sum of series = + tot); } } Print Sum of Series 1 + (x^2/2) + (x^3/3) + (x^4/4) + .. (x^n/n) //to find sum of series 1 + (x^2/2) public class EvenFractions { void func(int n, int x) { int i; double a=0, s=1, b; for(i=2;i<=n;i+=2) { b=Math.pow(x,i); a=b/i; s=s+a; } System.out.println(s); } } + (x^3/3) + (x^4/4) + ..(x^n/n) Print Sum of series public class SumSeries { void func(int n, int x) { int i, f=1; double s=x, b; for(i=2;i<=n;i++) { b=Math.pow(x,i); f=f*i s=s+b/f; } (x+ (x^2/2!) + (x^ 3/3!)+ .n) System.out.println(s); } } .. Print Sum of series public class SumSeries { void func(int n) { int i, f=1; double s=0.0; for(i=1;i<=n;i++) { f=f*i; s=s+(double)i/f; } System.out.println(s); } } (1/1!) + (2/2!)+ .(n/n!)
Formatting page ...
Formatting page ...
Formatting page ...
Formatting page ...
Formatting page ...
Formatting page ...
Formatting page ...
Print intermediate debugging step
Show debugging info
Hide debugging info
Horizontal lines at:
Guest Horizontal lines at:
AutoRM Data:
Box geometries:
Box geometries:
Text Data:
© 2010 - 2025 ResPaper.
Terms of Service
Contact Us
Advertise with us