Trending ▼   ResFinder  

ICSE Computer Series Answers

8 pages, 20 questions, 1 questions with responses, 1 total responses,    0    0
Dimpy Singh
St. Helena's School and Junior College, Pune
10
+Fave Message
 Home > musicismylife >   F Also featured on: icse_prelims adarshpankaj

Formatting page ...

Pythagorean Triplets: //Program to print the Pythagorean triplets from 1 to 200 //A Pythagorean triplet is one that satisfies the condition //h*h=b*b+ht*ht for a right-angled triangle public class pythgorean { public void finfPythagorean() { int b,ht,hy; for(b=1; b<=200;b++) { for(ht=1;ht<=200;ht++) { for(hy=1;hy<=200;hy++) { if(ht<b) continue; else if((b*b+ ht*ht)==(hy*hy)) { System.out.println(b+ +ht+ +hy); //delay loop to hold scrolling of output for(int delay=1;delay<=1000000000;delay++){} }//Endelse }//End innermost loop }//End middle loop }//End Outermost loop }//End method }//Endclass Fibonacci Series: A fibonacci series is one in which the next term is the sum of previous two terms eg. 0 1 1 2 3 5 8 //to print the fibonacci series till n terms public class Fibonacci { void func(int n) { int a=0, b=1, c=0, i; System.out.print( a + , + b); for(i=3;i<=n;i++) { c=a+b; System.out.print( , + c); a=b; b=c; } }} Tribonacci Series: A tribonacci series is one in which the sum next term is the sum of previous three terms eg. 0 6 11 20 . package NewRishabh; //to print the tribonacci series till n terms public class Tribonacci { void func(int n) { int a=0, b=1, c= 2, d=0, i; System.out.print( a + , + b + , + c); for(i=4;i<=n;i++) { d=a+b+c; System.out.print( , + d); a=b; b=c; c=d; } } } Print Series 2 -4 6 -8 n terms //to print series 2 -4 6 -8 n terms import java.util.Scanner; public class EvenSeries { public static void main() { Scanner sc=new Scanner(System.in); int c,i=2,n; // c for counter, i for even nos. System.out.print( Enter the number of terms: ); n=sc.nextInt(); System.out.print( \n ); for(c=1; c<=n; c++, i+=2)//to generate n terms of the series { if(i%4==0) System.out.print(-i+ ); else System.out.print(i+ ); }//method ends } }//class ends Print Series 1 -3 5 -7 n terms //to print the series 1 -3 5 -7 n terms class OddSeries { public void findSeries(int n)//to print series { 1 2 3 int i=1, c, f=1;// i for odd nos, c for counter, f for flag for(c=1;c<=n;c++) { if(f%2==0) System.out.print(-i+ ); else System.out.print(i+ ); i+=2; f++; }//loop ends }// method ends }//class ends Print Series 1 12 123 1234 n //to print series 1 12 123 1234 . n terms public class SeriesOfNatural { public void findSeries( int n ) { int s=0, c; // s for terms of series, c for counter to generate n terms for(c=1; c<=n; c++) { s= s*10 + c; System.out.println(s+ ); } }// method ends } // class ends Print Series 1 11 111 111 ..n terms // to print series 1 11 111 1111 ..n terms public class SeriesOfOne { public void findSeries(int n) { int s=0, c; // s for terms of series, c for n terms for ( c=1; c<=n; c++)// to generate n terms { s = s * 10 + 1; System.out.print(s + ); }//for ends }// method ends }//class ends Print First n Natural Numbers and their Cubes in Tabular Form followed by their Sum at the end // to find sum of cubes of natural numbers public class CubeSeries { public void findSeries(int n) { int sum=0,cub=0; System.out.println( Number\t\tCubes\n ); for(int i=1;i<=n; i++) {cub=i*i*i; System.out.println(i+ \t\t +cub); sum+=cub; } System.out.println( \n\nSum of the series : + sum); } } Print Sum of Series 1/1^3 1/2^3 + 1/3^3 .1/n^3 // to find sum of series 1/1^3 1/2^3 + 1/3^3 .1/n^3 public class FracCuNegPosSeries { public void findSeries(int n) { double sum=0; for(int i=1; i<=n ; i++) { if(i% 2==0) sum = sum-(double)1/(i*i*i); else sum = sum + (double)1/(i*i*i); } System.out.println( Sum of the series : +sum); } } Print Sum of the Series 1/1 1/2 1/3 .. 1/n // to find sum of 1/1 1/2 1/3 .. 1/n public class FractionSeries { public void findSeries(int n) { double sum=0; for(int i=1; i<=n; i++) sum+=(double)1/i; System.out.println( sum of the series = +sum); } } Print Sum of Series 1+ (1+3) + (1+3+5) ..(1+3+5+ ..n) //to find sum of 1+ (1+3) + (1+3+5) public class SumPrecOddNum { public void SumPrecOddNum(int n) { int sum=0, tot=0; for(int i=1; i<=n; i+=2) { sum+=i; tot+=sum; } System.out.println( Sum of series = + tot); } } Print Sum of series 1+ (1+2) + (1+2+3) . (1+2+3+ .n) // to find sum of series 1+ (1+2) + (1+2+3) . public class SumPrecNaturalNum { public void findSeries(int n) { int sum=0, tot=0; for(int i=1; i<=n ;i++) { sum+=i; tot+=sum; } System.out.println( sum of the series = +tot); } } Print Sum of Series 1/1^2 + 1/2^2 + 1/3^2 1/n^2 // to find sum of series 1/1^2 + 1/2^2 + 1/3^2 1/n^2 public class FracSqSeries { public void findSeries(int n) { double sum =0; for ( int i=1; i<=n ;i++) sum+=(double)1/i*i; System.out.println( Sum of series = + sum); } } Print Sum Of Series 1/1 1/2 + 1/3 + 1/4 1/n // to find sum of series 1/1 1/2 + 1/3 + 1/4 ..1/n public class FracNegPosSeries { public void findSeries(int n) { double sum=0; for(int i=1 ; i<=n; i++) { if(i%2==0) sum = sum -(double)1/i; else sum = sum +(double)1/i; } System.out.println( Sum of the series = + sum); } } Print Natural Numbers and their Squares till N followed by their Sum // to print natural numbers and their squares followed by their sum public class SquareSeries { public void findSeries(int n) { int sum=0,sq=0; System.out.println( Number\t\tSquare\n ); for(int i=1; i<=n; i++) { sq=i*i; System.out.println(i+ \t\t +sq); sum+=sq;//to find square and accumulate } System.out.println( Sum of the series : + sum); } } Print Sum of Series 1/2 ^2 + 2/3^2 + 3/4^2 + n/(n+1)^2 // to find sum of series 1/2^2 + 2/3^2 + 3/4^2 .. public class FracIncSeries { public void findSeries(int n) { double sum=0; for(int i=1; i<=n; i++) { sum+=(double)i/((i+1)*(i+1)); } System.out.println( Sum of the series = +sum); } } Print Sum of 2 + (2+4) + (2+4+6) (2+4+6+ n) // to find sum of 2 + (2+4) + (2+4+6) public class SumPrecEvenNum { public void SumPrecEvenNum(int n) { int sum=0, tot=0; for(int i=2; i<=n ; i+=2) { sum+=i; tot+=sum; } System.out.println( Sum of series = + tot); } } Print Sum of Series 1 + (x^2/2) + (x^3/3) + (x^4/4) + .. (x^n/n) //to find sum of series 1 + (x^2/2) public class EvenFractions { void func(int n, int x) { int i; double a=0, s=1, b; for(i=2;i<=n;i+=2) { b=Math.pow(x,i); a=b/i; s=s+a; } System.out.println(s); } } + (x^3/3) + (x^4/4) + ..(x^n/n) Print Sum of series public class SumSeries { void func(int n, int x) { int i, f=1; double s=x, b; for(i=2;i<=n;i++) { b=Math.pow(x,i); f=f*i s=s+b/f; } (x+ (x^2/2!) + (x^ 3/3!)+ .n) System.out.println(s); } } .. Print Sum of series public class SumSeries { void func(int n) { int i, f=1; double s=0.0; for(i=1;i<=n;i++) { f=f*i; s=s+(double)i/f; } System.out.println(s); } } (1/1!) + (2/2!)+ .(n/n!)

Formatting page ...

Formatting page ...

Top Contributors
to this ResPaper
(answers/comments)


Adithya Kannan

(1)

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 

 


© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

musicismylife chat