Trending ▼   ResFinder  

CBSE Class XII 2011 : MATHEMATICS

9 pages, 55 questions, 25 questions with responses, 39 total responses,    0    0
cbse12
  
+Fave Message
 Home > cbse12 >   F Also featured on: deep2015 rhea30

Instantly get Model Answers to questions on this ResPaper. Try now!
NEW ResPaper Exclusive!

Formatting page ...

~~, 65/1 1 P.T 0 0 1 : 1 00 - ""'", ~ ;~~~~:;"".; ~ t~,~;., l1fUffi .0. ' . J! a m I i f ~ , ~\,c.;t I ~ ~ ~ ' qjT I ~ q j) I f (;r& t f{ ~ -~ ~ I ~ 1 1 ~ not write ~ q f cfa\UT " q:jT ~ -~ I ' t1 ~ ~ ~ ~ ~ ~-~~ j) ~ -~ ~ ~ " (fq:)" ~ ~ ~ , ~ 2 9 students will read the question paper only and will on the answer script during this period. M ~ ~ ~ ~ ~ i f t he a .m., 1 0.30 t o a .m. 1 0.15 F rom a .m. 1 0.15 a t d istributed q uestion T he p aper. q uestion t his r ead t o a llotted b een h as t ime b efore q uestion t he o f N umber S erial t he d own b e s hould p aper q uestion t he o f s ide h and r ight t he o n g iven ~~~I ~ - ~ m - ~"q)T 3 "(R" ~ Q 5)s a :rrtif ~ a nswer-book. t he o f p age t itle t he I I I I I I I Candidates arks: I 1 ~(9.1 " ~I 1 0.30 - q:;r ~ ~ -~ ~ f Cfj b e w rite I * 3 tf{ ~ i f ~ 3 lT\ ~ f fl ~ " qj"{ I J ~ . ,;,.,.; ~ ~ ~ -~ ~ f Cfj ~ ~ . I q f iR"?: 1 5 ~ " qj"{ n umber C ode I ")1~ ~ 1 0.15 ~ ~ ~ q j) ' qjT f<-I~-t1 , I Ii I ~ M P lease I M MATHEMATICS ~ -:1I"I'111 4 . ~ 4 - w ill m inutes attempting q G I~I'1 ~ i f ~ 1 5 I aximum h ours 3 ~ paper ' ;f I :rfi:rq;frif f m ~ . I !TJi ~ ~ ~ -~ ~ . -~ ~ . 3 "'~ ~ . . ~ 10.15 . . . ql~ ~ . No. : a llowed: . ~ Roll ' llme 6 5/1 N o. C ode I S OS S eries I frirlr R~ ;' qj)-s ;{. must write the Code on 0. ";1. Please check that this question paper contains 11 printed pages. written on the title page of the answer-book by the candidate,. Please check that this question paper contains 29 questions. it. any answer ~j{ 0" ...",.-c' -.f / i ? . / i ? f it \ 1 e 9": n J j r f/ q , < { : t q / 3 i' ~ i t f IJr;rif i f' ~ 7 i f t T ~ / i ? q ;r 3 iq; : qn- ~ i t f IJr;rif if ~ 1 2 i f - ar ~ / i ? q ;r 3 iq; ~ ~ i t f IJr;rif i f ~ 1 0 i f 3 T ~ / ~ . 3 1Rqp;f ~ \ I:/W : p ermitted. n ot i s c alculators o f U se (v) q uestions. such a ll i n a lternatives t he o f o ne o nly a ttempt t o h ave Y ou e ach. marks s ix o f q uestions 2 a nd e ach m arks f our o f q uestions 4 i n provided b een h as c hoice' i nternal H owever, c hoice. o verall n o i s T here (iv) q uestion. t he o f r equirement e xact t he p er a s o r sentence o ne w ord, o ne i n a nswered b e t o a re A S ection i n q uestions A ll (iii) e ach. m arks s ix o f q uestions 7 o f c omprises C S ection a nd each m arks f our o f q uestions 1 2 o f c omprises B S ection e ach, mark o ne o f q uestions 1 0 o f c omprises A S ection C . B and A , sections The question paper consists of 29 questions divided Pn" i f ; :.tt ~ / i ? q ;r 3 iq; ~ ~ ff/4I/o<I All questions are compulsory. (ii) 1qj 3 m 4 3 1P.fCfT q r;.p;r ~ ~ ~ a -frf i Ji J I;'l;if \ I:/W i f 3 T ~ if.. 1Jrrq;1 i t i q Jc? a iW ~ 7 ft ( fi"( ( i f' ; r(ff ~ i f ~~\;1T~if/ if iiit i:ft;r 9U-.sT ? if ~ f J I;'l;if \ I:/W ' l!: / i ? ~ 3 1T;:rrfi:q; i f J I;'l;if w ~ 1 [Uf w if 29 ~ ~ 3 rj11frr ; :.tt J r2177J 2 q Jc? a iW W~ i ' q:jl;;rT ~ iii ) ( ii) Ji < , (iv) ( "1;~~ (v) (i) 2 65/1 (i) - --' . General Instructions: into three aT,-ar Pn" / n \Z1" - llllllr ~ - 65/1 3 ' ,.. ) . s m s m + . cos 75 -1 I ' ~~: _ c"::~~t , ~ ' Q ~ 3 c os 2n) ~ I A " j:fR" ( ~ 3] . o f c os -1 ~ i f ~ " 0 u e f ~ ~ ~ t erms -1 q:jT 3 . 2n) ~ m . A A s I ~ i :I1T 3] m v a p rrnCIpa I m sin 15 sin 75 A cos 15 -I 1 5 s m- 1( ~ [ 2' w [2 rIte , sin 75 . , 5 + e t .. m ~ , : ~ ( cos 3 ) 2n ~ s in 1 5 cos I S a t W .h 5 i 5 f i 3 1 = cos- = ~ "j:fR" 3. A I h W3lif; 5. f I I A ~ . 2 ~ * 4. ( . 2n) . . 3 I ~ a rI;rqr ~ f ~ ~ f qj ~ I ~ ~ ~ ~ B A~ 6 )} ( 3, 5 ), ( 2, 4 ), { (I, = f ~ m 7 } 6 , 5 , { 4, = B 3 }, 2 , { I, = A trRT n ot. o r o ne-one i s f w hether S tate B . t o A f rom f unction a b e 6 )} ( 3, 5 ), ( 2, 4 ), { (I, = f l et a nd 7 } 6 , 5 , { 4, = B 3 }, 2 , { I, = A L et 1. I - ff q j7 3 iCli 1 ~ ~ n -q; 1 0 : if 1 ~ ~ e ach. m ark 1 c arry 1 0 t o 1 n umbers Question ' ~ 3:r ~r SECTION : A ";4;!'ii1Y~& c/fi~1~f(:! ? Evaluate: cos 75 :'" ,. -2 . -2 If a matrix has 5 elements, write all possible orders it can have. P.T.G. ~ ~ -.c~'- 1:fT";f~ . d x b )3 ~ f : (ax + b)3 dx Evaluate: In 7. + ( ax Evaluate: f 6. ~ : In 1:fT";f ~ Write of the ~an (1, 0, 0) "(f~ (0, 1, 1) ~ Write the the points (1, ~ I 1\ -j i 1\ on the vector ~ 4 7 I ~ 4-iIct>(UI~ ~ ~'1:&r'qjT~ 2 - . z-6 = - . y+4 = x-5 - b g . y 1. Iven 0 e ~ = ~ = ~ I 65/1 7 1\ i + j. ~~I + j f quatIon v 1\ 3 3 0, 0) and 1\ i ' qjT~ i vector . e t r Ite . 1\ h . W 10 joining firc;rR "qR;ft '1:&r ~ ~-~~ of the 1\ -j ~ 1\ projection ector 9. line 1). m 1, direction-cosines e (0, the a 8. 2 '0" ~~,!",",' B ~ ~ e ach. m a+b, { if f unction t he F ind 7 . + l : a s d efined i s 5 } 4 , 3 , 2 , 1 , { O, s et t he o n * o peration b inary A OR J Ox I R' = ii' = f f (x) 3iq; og a s = g of t arks 4 c 2 2 t 1 1 arry 4 i?Ii d JfR efined Jffflq; hat R '(fq:; s ~ 22 uch R R f : ~ R L et : g it 11 b mr JfR 11. numbers e Question o I i I SECTION a+b<6 6 and each 'a' ~ ~ I t ~ element 'a'. J W of R' ~~ inverse : t ~ ' Sf"q)"R ~ 6 * < b + ~ a ~ ~ ~ ~ ~ b , 5 } a { + 4 , 3 , 2 , 1 , { O, ~~ ~ = " the ~ operation being [T'{T 7 ~ this a, f + = g of l - b + for 6 Ox = ~ f R a i identity with , ~ f 6 the invertible ~ R R ~ f : R : g is is og zero set ~ the (x) that of ~ Show - a+b , a*b= 12. Prove that: [ ,Ji-,;-x - .J:f+x -1 +.J~ .Jl-=-x ] x 1 7t = 4 - "2 -1 cos ' a' ~ ~ q -~:x1 S: :S: 1 ' x, ~~~: tan ;r ~ 6 ~ ~ b + " (fm a I t t ~ d a - 6 ~~~ 6 , q ~ ;r - b ~ + ~ ~ ~ t cYj~~un(.j ~ ~ ~ a a:*b= 65/1 ! ~ c' 5 1 : S: x : ~ - x , c " 2 1 -1 S: 1 7t os ] - .Ji-=x 4 - .JI-,;-x +,Ji -=-x .JI-,;-x = [ -1 tan P.T.G. -2 2x - 3 2x - 9 2x - 27 : ~ ~ 3x - 16 = 0 x- 8 ~ 3x - 4 x- 4 ~ x ~ R Jor1I(.1I~(1 ~ m q jT " "J]um ~ ~1\fTJl~1 3x - 64 x 14. Find the relationship between 'a' and 'b' so that the function 'f' defined by: { ax + 1, if x:S 3 f(x) = is continuous at x = 3. if x>3 ~ , " qft~ 3 > I x ~ ~ ~ 3 + ~ , ~ 3 x :S ~ 1 , ax q jT ~ ~ ' b' ~ ' a' m bx ~, {log (x e)} = f (x) ~ ' f', ~ ~ { + dx . 2 log x - - a o w s Y , - x dy - t th h e - x Y If - OR bx + 3, cosO) m I on 7t] 2 6 m 0 .03~~F~, I ~ ~ F ~ I"'~G . q: ~ R~~'1 ~ ~~~~~9~~~~, ~ 65/1 ~~ 3"{?AaJ c m, 0 I ~ ~ 2. ~ .03 o f e rror a ~ ~ its surface area. .q: ] ~ + cose) n w ith c m 9 a [ 0, e , - e s error in calculating in 4 - = y f Cfi ~ (2 s m easured i s s phere a o f r adius t he If ~ then find the approximate . [0 . - t" u f nc m . creasmg . . , (xe)} OR + a -e. 4 sin e (2 n = I Prove t h at y S . {log . 2 dx 15 X l og = ~ ~ I ~ ~ ...~~..' G ~II~~ ~ ( 11 ~ ~ , y - x e - Y X '-11~ -n& 3"{?AaJ that d a) -L dx - + (2x d (1 + x 2 ) - 2y ~ m ~ , y ) l og ( ; t an = - + (2x a) dx2 17. Evaluate: n/2 f dx : ~ f n/2 x + sin x dx 1+cosx C 0 x dy , ~ ,. ~; - y dx = .J;i-~7dx Solve the following d (y + 3x 2) - x "" : d "''-': "." . x ~ ~ - ~1.i1~,UI qj) R equation: -~7 = d differe~tial x ~ RI'--1I(1~d 19. y - following . d the y Solve x 18. i ~ d -y = 0 x + sin x dx 1 + cosx 0 1=fr;:r 0 == , x ~ dx f -{ (1 + x2) d2 show Cfi (; log y ), = tan 16. If x differential - equation: =x ' . : ~ ~ ~1.i1~,UI - RI'--1I(1I(9d ~ qj) dy =x (y + 3x 2dx ) dy 20. Using vectors, find the area of the triangle with vertices A(1, 1, 2), 5 ) 3 , B (2, 2 ), 1 , A (l, m ~ 7 - --~ P.T.D. ~ - 65/1 ~- ~ ~ ~ - q)1 ~ ~ I ' q}""{, ~ 5 ) m 5 , - q)1 C (l, ~ ~ B(2, 3, 5) and C(l, 5, 5). J "'-- b ~ n'l ~"l --~ : ~11~~ dx ~ ~ J"t;; J n/3 : --=~~+ and takes t he a nd 2 k) + 4 ] + ( 3i A + ~ 1 \ 2 k) + ' :' 4 J ' :' + ( 31 + 1 \ 2 k) + ' :' J " I n c oins. I t wo ~ ~ c ontaining ~ e ach ~ ~ I II a nd ~ ~ I I ~ I , out a coin. If the coin is of gold, what b ox a c hooses p erson A c oin. s ilver o ne a nd g old o ne i s t here I II, box box I, both coins are gold coins, in box II, both are silver coins and in at random is the " 10 ~ ~ ~ ~ ~ " G1";1) ~ ~ ~ ~ q:;r I ~, m ~ f u"iiiit f iij ~ ~ ~ I ~ t , t I II~, ~ } fll(.f~r:ff ~ ~ ~ ~ ~ 'i;fTm-q:;rt? ~ ~ ~ m t , - q:;r m ~ ~I<!~~J ~ ~ ~ ~ ~ ~ ~ I II ~ " ~ ~ ~ I G1";1) I I I , n ~ I t ~, ~ ~ ~ t ~ , ~ - q:;r ~ R~I(.'1ctl ~ m ~ probability that the other coin in the box is also of gold? 65/1 ~ 6 O . - = = x ~ ~ x -~ ~ I 3 + x 2 + - ( 21 = r ~ 5 = 1 k ) b oxes + \ ~ I = Y = (2i - ] ~ 1 \ 1 1 0) - 1 j \ 5 , 1 i dentical ( i . \ - 1 , ( - t hree r ~ ~ ~ G iven 28. to x = 5. j + k) \ 1 - \ ~ . (i =- 6 x (- 1, - 5, - 10), from the point of point k) of the ' distance r ~ ' (fP-1T ~ ~ ~ above x-axis and between intersection of the line "1 plane + 31 and evaluate the area under the :' the = Ix y A ) m q :jf I 3 - + Find q:;r x I ' (f'qj 0 Y = = x 27. 31 x+ I of l:fi = curve y dx -- (:;": Sketch the graph ~ 26. 7 -5 .J-c:x ~ J I ~ ~ 1:Jr;r 3:r~ nl6 , ~ rr Determine d esktQP 4 0,000 a c omputers R s. o a - the number f d emand nd c omputers 2 5,000 R m onthly s. p ersonal c ost o f w t otal ill t ypes t t will not exceed 250 units. he t hat hat t wo s ell m e stimates odel t o p lans p ortable a H e a nd m erchant respectively. model A - of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than Rs. 70 lakhs and his profit on the desktop model is Rs. 4,500 and on the portable model is Rs. 5,000. ' ~ ~ , ~ I ~ ~ m "(f4T ~ . ~ ~ ~ 4,500~. W?J1R ~ ~ ~ ~ m ~ ~ 1ft ' - ;rf:r "!iA1m ~ ~ ~ ~ ~ ~ ~ m~ ~ ~ ~ ~ o ;f1i't ~ 0 5 ~ 2 ~ , m G-'fq ~ 4 1 :{lfuCfi ~ m ~ 7 0 5 ,000~.~, 0,000~. - q;~ ~ ~ 2 - q;~ f 3 1f~ C:ti 5,000~. " 5fqjT{ " GT ~ " qj~~~~~~~? ~ ~~ ~. ~ "(f4T i-~ifq ~ ~ ~ "(f4T ml:fi~~~1 ~ r ~~ ~ ~ W m'{T ~ W ?J1R ~ ~ ~ ~ ~ ~ Make an L.P.P. and solve it graphically. 65/1 . rll.li..iiiiii...iii_..ii~.;;;;;;;;;;;;; 11 ~ ~~~~ ' . t,-~ ,

Formatting page ...

Top Contributors
to this ResPaper
(answers/comments)


luckykaul

(6)

Shreyas M.S.

(5)

rahulkapoor28

(5)

Just Unique

(4)

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 

Additional Info : CBSE Class XII Board Solved Question Paper 2011 Mathematics
Tags : CBSE Board 2015, Specimen Question Paper 2011 Mathematics, solved sample mock guess question paper, cbse class XII syllabus, cbse class 12 previous years model papers., cbse, cbse papers, cbse sample papers, cbse books, portal for cbse india, cbse question bank, central board of secondary education, cbse question papers with answers, prelims preliminary exams, pre board exam papers, cbse model test papers, solved board question papers of cbse last year, previous years solved question papers, free online cbse solved question paper, cbse syllabus, india cbse board sample questions papers, last 10 years cbse papers, cbse question papers 2017, cbse guess sample questions papers, cbse important questions, specimen / mock papers 2018.  

© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

cbse12 chat