Trending ▼   ResFinder  

CBSE Class 12 Board Exam 2018 : Physics

19 pages, 88 questions, 0 questions with responses, 0 total responses,    0    0
cbse12
  
+Fave Message
 Home > cbse12 >

Instantly get Model Answers to questions on this ResPaper. Try now!
NEW ResPaper Exclusive!

Formatting page ...

SET-1 H$moS> Z . Series SGN Code No. amob Z . 55/1 narjmWu H$moS >H$mo C ma-nwp VH$m Ho$ _wI-n >na Ad ` {bIo & Roll No. Candidates must write the Code on the title page of the answer-book. H $n`m Om M H$a b| {H$ Bg Z-n _o _w{ V n > 19 h & Z-n _| Xm{hZo hmW H$s Amoa {XE JE H$moS >Z ~a H$mo N>m C ma -nwp VH$m Ho$ _wI-n > na {bI| & H $n`m Om M H$a b| {H$ Bg Z-n _| >26 Z h & H $n`m Z H$m C ma {bIZm ew $ H$aZo go nhbo, Z H$m H $_m H$ Ad ` {bI| & Bg Z-n H$mo n T>Zo Ho$ {bE 15 {_ZQ >H$m g_` {X`m J`m h & Z-n H$m {dVaU nydm _| 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>m Ho$db Z-n H$mo n T>|Jo Am a Bg Ad{Y Ho$ Xm amZ do C ma-nwp VH$m na H$moB C ma Zht {bI|Jo & Please check that this question paper contains 19 printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. Please check that this question paper contains 26 questions. Please write down the Serial Number of the question before attempting it. 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. ^m {VH$ {dkmZ (g mp VH$) PHYSICS (Theory) {ZYm [aV g_` : 3 K Q>o A{YH$V_ A H$ : 70 Time allowed : 3 hours 55/1 Maximum Marks : 70 1 P.T.O. gm_m ` {ZX}e : (i) g^r Z A{Zdm` h & Bg Z-n _| Hw$b 26 Z h & (ii) Bg Z-n Ho$ nm M ^mJ h : I S> A, I S> ~, I S> g, I S> X Am a I S> ` & (iii) I S> A _| nm M Z h , `oH$ H$m EH$ A H$ h & I S> ~ _| nm M Z h , `oH$ Ho$ Xmo A H$ h & I S> g _| ~mah Z h , `oH$ Ho$ VrZ A H$ h & I S> X _| Mma A H$ H$m EH$ _y `mYm[aV Z h Am a I S> ` _| VrZ Z h , `oH$ Ho$ nm M A H$ h & (iv) Z-n _| g_J na H$moB {dH$ n Zht h & VWm{n, Xmo A H$m| dmbo EH$ Z _|, VrZ A H$m| dmbo EH$ Z _| Am a nm M A H$m| dmbo VrZm| Zm| _| Am V[aH$ M`Z XmZ {H$`m J`m h & Eogo Zm| _| AmnH$mo {XE JE M`Z _| go Ho$db EH$ Z hr H$aZm h & (v) Ohm Amd `H$ hmo, Amn {Z Z{b{IV ^m {VH$ {Z`Vm H$m| Ho$ _mZm| H$m Cn`moJ H$a gH$Vo h : c = 3 108 m/s h = 6.63 10 34 Js e = 1.6 10 19 C 0 = 4 10 7 T m A 1 0 = 8.854 10 12 C2 N 1 m 2 1 = 9 109 N m2 C 2 4 0 Bbo Q >m Z H$m `_mZ (me) = 9.1 10 31 kg `yQ >m Z H$m `_mZ = 1.675 10 27 kg moQ>m Z H$m `_mZ = 1.673 10 27 kg AmdmoJm mo g `m = 6.023 1023 {V J m_ _mob ~mo Q > O_mZ {Z`Vm H$ = 1.38 10 23 JK 1 55/1 2 General Instructions : (i) All questions are compulsory. There are 26 questions in all. (ii) This question paper has five sections : Section A, Section B, Section C, Section D and Section E. (iii) Section A contains five questions of one mark each, Section B contains five questions of two marks each, Section C contains twelve questions of three marks each, Section D contains one value based question of four marks and Section E contains three questions of five marks each. (iv) There is no overall choice. However, an internal choice has been provided in one question of two marks, one question of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions. (v) You may use the following values of physical constants wherever necessary : c = 3 108 m/s h = 6.63 10 34 Js e = 1.6 10 19 C 0 = 4 10 7 T m A 1 0 = 8.854 10 12 C2 N 1 m 2 1 = 9 109 N m2 C 2 4 0 Mass of electron (me) = 9.1 10 31 kg Mass of neutron = 1.675 10 27 kg Mass of proton = 1.673 10 27 kg Avogadro s number = 6.023 1023 per gram mole Boltzmann constant = 1.38 10 23 JK 1 55/1 3 P.T.O. I S> A SECTION A 1. g_m Va nWm| na J{V_mZ EH$ moQ>m Z Am a EH$ Bbo Q >m Z {H$gr EH$g_mZ Mw ~H$s` jo , Omo BZHo$ J_ZnWm| Ho$ b ~dV H$m` aV h , _| doe H$aVo h & BZ_| go H$m Z-gm C Amd { m Ho$ d mr` nW _| J{V H$aoJm ? 1 A proton and an electron travelling along parallel paths enter a region of uniform magnetic field, acting perpendicular to their paths. Which of them will move in a circular path with higher frequency ? 2. (a) Ob emoYZ, VWm Ho$ Zm_ {b{IE & (b) Zo e `-{M{H$ gm _| Cn`moJ hmoZo dmbo {d wV -Mw ~H$s` {d{H$aUm| 1 Name the electromagnetic radiations used for (a) water purification, and (b) eye surgery. 3. g_mZ Amd { m Am a {d{^ Vrd VmAm| Ho$ Xmo Amn{VV {d{H$aUm| Ho$ {bE AZw `w $ dmo Q>Vm Ho$ gmW H$me-{d wV Ymam Ho$ {dMaU H$mo Xem Zo dmbo J m \$ It{ME & C Va Vrd Vm Ho$ {d{H$aU Ho$ {bE J m \$ H$mo A {H$V H$s{OE & 1 Draw graphs showing variation of photoelectric current with applied voltage for two incident radiations of equal frequency and different intensities. Mark the graph for the radiation of higher intensity. 4. {H$gr V d Ho$ Mma Zm{^H$ g b{`V hmoH$a H$moB ^mar Zm{^H$ ~ZmVo h {Og_| D$Om H$m C _moM hmoVm h & OZH$ AWdm g V{V Zm{^H$m| _| go {H$gH$s ~ YZ D$Om {V `yp bAm Z A{YH$ hmoJr ? 1 Four nuclei of an element undergo fusion to form a heavier nucleus, with release of energy. Which of the two the parent or the daughter nucleus would have higher binding energy per nucleon ? 5. bKw Va J gmaU godmAm| mam MmaU (g MaU) H$s H$m Z-gr {dYm `w $ H$s OmVr h ? Which mode of propagation is used by short wave broadcast services ? 55/1 4 1 I S> ~ SECTION B 6. Xmo {d wV ~ ~m| P Am a Q Ho$ {VamoYm| H$m AZwnmV 1 : 2 h & `o loUrH $_ _| {H$gr ~ Q>ar Ho$ {gam| go g `mo{OV h & BZ ~ ~m| _| e{ $ j` H$m AZwnmV kmV H$s{OE & 2 Two electric bulbs P and Q have their resistances in the ratio of 1 : 2. They are connected in series across a battery. Find the ratio of the power dissipation in these bulbs. 7. AmaoI _| Xem E AZwgma CnojUr` Am V[aH$ {VamoY H$m H$moB EH$ 10 V H$m gob 38 Am V[aH$ {VamoY Am a 200 V {d wV -dmhH$ ~b (emf) H$s {H$gr ~ Q>ar Ho$ {gam| go nm d _| g `mo{OV h & n[anW _| Ymam H$m _mZ kmV H$s{OE & 2 AWdm {H$gr gob Ho$ {d wV -dmhH$ ~b (emf) {ZYm aU Ho$ {bE nmoQ>op e`mo_rQ>a `d Wm _| Iwbo n[anW _| gob H$m g VwbZ {~ X 350 cm na h & O~ gob Ho$ ~m n[anW _| 9 H$m EH$ {VamoY `w $ {H$`m OmVm h , Vmo g VwbZ {~ X 300 cm na WmZm V[aV hmo OmVm h & gob H$m Am V[aH$ {VamoY kmV H$s{OE & 2 A 10 V cell of negligible internal resistance is connected in parallel across a battery of emf 200 V and internal resistance 38 as shown in the figure. Find the value of current in the circuit. OR 55/1 5 P.T.O. In a potentiometer arrangement for determining the emf of a cell, the balance point of the cell in open circuit is 350 cm. When a resistance of 9 is used in the external circuit of the cell, the balance point shifts to 300 cm. Determine the internal resistance of the cell. 8. 9. (a) Ada $ Va Jm| H$mo m`: D$ _m Va J| `m| H$hm OmVm h ? n Q> H$s{OE & (b) {d wV -Mw ~H$s` Va J| g doJ dhZ H$aVr h Bg H$WZ go Amn `m g_PVo h (a) Why are infra-red waves often called heat waves ? Explain. (b) What do you understand by the statement, Electromagnetic waves transport momentum ? ? `{X 412 5 nm Va JX ` H$m H$me ZrMo {XE JE YmVwAm| na Amn{VV hmoVm h , Vmo H$m Z-gr YmVw H$me-{d wV C gO Z Xem EJr Am a `m| ? YmVw H$m` -\$bZ (eV) Na 1 92 K 2 15 Ca 3 20 Mo 4 17 2 2 If light of wavelength 412 5 nm is incident on each of the metals given below, which ones will show photoelectric emission and why ? 10. Metal Work Function (eV) Na 1 92 K 2 15 Ca 3 20 Mo 4 17 15 V {eIa dmo Q>Vm H$s {H$gr dmhH$ Va J H$m Cn`moJ {H$gr g Xoe {g Zb Ho$ ofU Ho$ {bE {H$`m J`m h & 60% _m Sw>bZ gyMH$m H$ m V H$aZo Ho$ {bE _m Sw>bH$ {g Zb H$s {eIa dmo Q>Vm kmV H$s{OE & A carrier wave of peak voltage 15 V is used to transmit a message signal. Find the peak voltage of the modulating signal in order to have a modulation index of 60%. 55/1 6 2 I S> g SECTION C 11. Mma {~ X Amdoe Q, AZwgma p WV h & q, Q Am a q ^wOm a Ho$ {H$gr dJ Ho$ H$moZm| na AmaoI _| Xem E kmV H$s{OE (a) Amdoe Q na n[aUm_r {d wV ~b, VWm (b) Bg {ZH$m` H$s p W{VO D$Om & 3 AWdm 55/1 (a) VrZ {~ X Amdoe q, 4q Am a 2q ^wOm l Ho$ g_~mh { ^wO ABC Ho$ erfm] na AmaoI _| Xem E AZwgma p WV h & Amdoe q na H$m` aV n[aUm_r {d wV ~b Ho$ n[a_mU Ho$ {bE ` OH$ m V H$s{OE & (b) Amdoem| H$mo AZ V X ar VH$ n WH $ H$aZo Ho$ {bE {H$E OmZo dmbo H$m` H$s _m m kmV H$s{OE & 7 3 P.T.O. Four point charges Q, q, Q and q are placed at the corners of a square of side a as shown in the figure. Find the (a) resultant electric force on a charge Q, and (b) potential energy of this system. OR (a) Three point charges q, 4q and 2q are placed at the vertices of an equilateral triangle ABC of side l as shown in the figure. Obtain the expression for the magnitude of the resultant electric force acting on the charge q. (b) Find out the amount of the work done to separate the charges at infinite distance. 55/1 8 12. 13. (a) {H$gr Ymp dH$ Vma H$s MmbH$Vm nX H$s n[a^mfm Xr{OE & BgH$m {b{IE & (b) {H$gr MmbH$ _| _w $ Bbo Q >m Zm| H$s A{^H$ nZm H$m Cn`moJ H$aHo$ g `m KZ d Am a {dlm {V H$mb Ho$ nXm| _o| Vma H$s MmbH$Vm Ho$ {bE ` O H$ `w n H$s{OE & AV: Ymam KZ d Am a AZw `w $ {d wV -jo E Ho$ ~rM g ~ Y m V H$s{OE & SI _m H$ (a) Define the term conductivity of a metallic wire. Write its SI unit. (b) Using the concept of free electrons in a conductor, derive the expression for the conductivity of a wire in terms of number density and relaxation time. Hence obtain the relation between current density and the applied electric field E. Mw ~H$s` AmKyU H$m H$moB N> S> Mw ~H$ 0 44 T Ho$ {H$gr EH$g_mZ ~m Mw ~H$s` . jo go 60 na gao{IV h & n[aH${bV H$s{OE (a) Mw ~H$ Ho$ Mw ~H$s` AmKyU H$mo . (i) Mw ~H$s` jo Ho$ A{^b ~dV , (ii) Mw ~H$s` jo Ho$ {dnarV gao{IV H$aZo Ho$ {bE, Mw ~H$ H$mo Kw_mZo _| {H$`m J`m H$m` , VWm (b) H$aU (ii) _| A {V_ {XJ {d `mg (A{^{d `mg) _| Mw ~H$ na ~b-AmKyU & 3 6 J/T 3 A bar magnet of magnetic moment 6 J/T is aligned at 60 with a uniform external magnetic field of 0 44 T. Calculate (a) the work done in turning the magnet to align its magnetic moment (i) normal to the magnetic field, (ii) opposite to the magnetic field, and (b) the torque on the magnet in the final orientation in case (ii). 14. (a) (b) 55/1 bmoho Ho$ EH$ db` {OgH$s Amno{jH$ Mw ~H$erbVm r h , na n bnoQ> {V _rQ>a H$s {d wV -amoYr Vm ~o Ho$ Vma H$s bnoQ>Z h & O~ bnoQ>m| _| I Ymam dm{hV hmoVr h , Vmo db` _| Mw ~H$s` jo Ho$ {bE ` OH$ kmV H$s{OE & {H$gr Mw ~H$s` nXmW H$s Mw ~H$s` d { m 0 9853 h & Mw ~H$s` nXmW H$m H$ma nhMm{ZE & {H$gr EH$g_mZ Mw ~H$s` jo _| Bg nXmW Ho$ Qw>H$ S>o H$mo aIZo na jo -n Q>Z _| hmoZo dmbo $nm VaU H$mo Amao{IV H$s{OE & (a) An iron ring of relative permeability r has windings of insulated copper wire of n turns per metre. When the current in the windings is I, find the expression for the magnetic field in the ring. (b) The susceptibility of a magnetic material is 0 9853. Identify the type of magnetic material. Draw the modification of the field pattern on keeping a piece of this material in a uniform magnetic field. 9 3 P.T.O. 15. (a) (b) C{MV AmaoI H$m Cn`moJ H$aHo$ `h Xem BE {H$ {H$gr nmaXeu H$m M Ho$ n R> go namdV Z mam AY w{dV H$me H$mo {H$g H$ma a {IH$V: Y w{dV {H$`m Om gH$Vm h & 4 3 AndV Zm H$ Ho$ Ob _| p WV 3 2 AndV Zm H$ Ho$ H$m M Ho$ {H$gr g_~mh { _ Ho$ \$bH$ AB na H$moB H$me {H$aU {M mZwgma A{^b ~dV AmnVZ H$aVr h & \$bH$ AC go Q>H$amZo na `m `h {H$aU nyU Am V[aH$ namd{V V hmoJr ? AnZo C ma H$s nwp Q> H$s{OE & (a) Show using a proper diagram how unpolarised light can be linearly polarised by reflection from a transparent glass surface. (b) 55/1 The figure shows a ray of light falling normally on the face AB of 3 an equilateral glass prism having refractive index , placed in 2 4 water of refractive index . Will this ray suffer total internal 3 reflection on striking the face AC ? Justify your answer. 10 3 16. (a) ` J Ho$ `moJ _| `{VH$aU H$aVr h B Xmo gd g_ {P[a`m| _| go {H$gr EH$ H$mo H$m M go T>H$ {X`m OmE, Vm{H$ Bggo Jw OaZo dmbo H$me H$s Vrd Vm KQ> H$a 50% ah OmE, Vmo Bg `{VH$aU n Q>Z _| q\ $Om| H$s A{YH$V_ Am a `yZV_ Vrd VmAm| H$m AZwnmV kmV H$s{OE & (b) `{X EH$dUu H$me Ho$ WmZ na doV H$me H$m Cn`moJ {H$`m OmE, Vmo Amn {H$g H$ma H$s q\ $Om| Ho$ ojU H$s Anojm H$aVo h ? (a) 3 If one of two identical slits producing interference in Young s experiment is covered with glass, so that the light intensity passing through it is reduced to 50%, find the ratio of the maximum and minimum intensity of the fringe in the interference pattern. (b) What kind of fringes do you expect to observe if white light is used instead of monochromatic light ? 17. 55/1 AndV Zm H$ 1 5 Ho$ H$m M go ~Zm dH $Vm { `m R H$m H$moB g_{_V C^`mo mb b|g {M mZwgma {H$gr g_Vb Xn U Ho$ erf na p WV d H$s gVh na aIm h & H$moB H$m{eH$ gwB AnZr ZmoH$ H$mo Bg b|g Ho$ _w ` Aj na aIVo h E, Aj na AnZo dm V{dH$, C Q>o {V{~ ~ Ho$ g nmVr hmoZo VH$ J_Z H$aVr h & b|g go gwB H$s _m{nV X ar x h & d H$s gVh H$mo hQ>mZo Am a `moJ H$mo XmohamZo na `h X ar y nmB OmVr h & x Am a y Ho$ nXm| _| d Ho$ AndV Zm H$ Ho$ {bE ` OH$ m V H$s{OE & 11 3 P.T.O. A symmetric biconvex lens of radius of curvature R and made of glass of refractive index 1 5, is placed on a layer of liquid placed on top of a plane mirror as shown in the figure. An optical needle with its tip on the principal axis of the lens is moved along the axis until its real, inverted image coincides with the needle itself. The distance of the needle from the lens is measured to be x. On removing the liquid layer and repeating the experiment, the distance is found to be y. Obtain the expression for the refractive index of the liquid in terms of x and y. 18. (a) (b) (a) hmBS >moOZ na_mUw _| Wm`r H$jm| H$s n[a^mfm Ho$ {bE ~moa Ho$ A{^J hrV H$m C oI H$s{OE & Xo ~ m br H$s n[aH$ nZm {H$g H$ma BZ H$jm| Ho$ Wm{` d H$s `m `m H$aVr h ? Ama ^ _| {Z ZV_ Ad Wm _| H$moB hmBS >moOZ na_mUw {H$gr \$moQ>m Z H$mo Ademo{fV H$aVm h , Omo Cgo n = 4 Va VH$ C mo{OV H$a XoVm h & \$moQ>m Z H$s Amd { m H$m AZw_mZ bJmBE & State Bohr s postulate to define stable orbits in hydrogen atom. How does de Broglie s hypothesis explain the stability of these orbits ? (b) A hydrogen atom initially in the ground state absorbs a photon which excites it to the n = 4 level. Estimate the frequency of the photon. 55/1 12 3 19. 20. (a) ~ YZ D$Om {V `yp bAm Z (BE/A) Am a `_mZ g `m A Ho$ ~rM J m \$ H$m Cn`moJ H$aVo h E Zm{^H$s` {dI S>Z Am a Zm{^H$s` g b`Z H$s {H $`mAm| H$s `m `m H$s{OE & (b) {H$gr ao{S>`moEop Q>d g_ Wm{ZH$ (ao{S>`moEop Q>d AmBgmoQ>mon) H$s AY -Am`w h & BgH$s g{H $`Vm 3 125% VH$ KQ>Zo _| {H$VZm g_` bJoJm ? df 3 (a) Explain the processes of nuclear fission and nuclear fusion by using the plot of binding energy per nucleon (BE/A) versus the mass number A. (b) A radioactive isotope has a half-life of 10 years. How long will it take for the activity to reduce to 3 125% ? (a) H$moB N>m m Xmo p-n g {Y S>m`moS>m| H$m Cn`moJ H$aHo$ `mdVu Ymam H$mo {X Q> Ymam _| n[ad{V V H$aZm MmhVr h & CgHo$ mam Cn`moJ {H$E OmZo dmbo n[anW H$m Zm_m {H$V n[anW AmaoI It{ME Am a BgH$s {H $`m{d{Y H$s `m `m H$s{OE & NAND JoQ> Ho$ {bE g `_mZ gmaUr Am a n[anW VrH$ ~VmBE & (b) 21. 10 (a) A student wants to use two p-n junction diodes to convert alternating current into direct current. Draw the labelled circuit diagram she would use and explain how it works. (b) Give the truth table and circuit symbol for NAND gate. A{^{d `mg _| {H$gr n-p-n Q >m { O Q>a Ho$ $nr {Zdoe Am a {ZJ V A{^bj{UH$ It{ME & `h Xem BE {H$ BZ A{^bj{UH$m| H$m Cn`moJ (a) {Zdoe {VamoY (ri), VWm (b) Ymam dY Z JwUm H$ ( ) H$mo {ZYm [aV H$aZo _| {H$g H$ma {H$`m Om gH$Vm h & 3 CE 3 Draw the typical input and output characteristics of an n-p-n transistor in CE configuration. Show how these characteristics can be used to determine (a) the input resistance (ri), and (b) current amplification factor ( ). 22. (a) (b) (a) (b) 55/1 b ~r X ar Ho$ ofUm| Ho$ {bE g Xoe {g Zbm| Ho$ _m Sw>bZ H$s Amd `H$Vm Ho$ VrZ H$maU ~VmBE & J m \$ mam H$moB l ` {g Zb ( d{Z g Ho$V), H$moB dmhH$ Va J Am a H$moB Am`m_ _m Sw>{bV Va J Xem BE & 3 Give three reasons why modulation of a message signal is necessary for long distance transmission. Show graphically an audio signal, a carrier wave and an amplitude modulated wave. 13 P.T.O. I S> X SECTION D 23. JrVm Ho$ {d mb` Ho$ {ejH$ {d m{W `m| H$mo e {jH$ ^ _U Ho$ {bE eha go bJ^J 200 km H$s X ar na p WV e{ $ g ` na bo JE & {ejH$ _hmoX` Zo ~Vm`m {H$ `mdVu Ymam (ac) Ho$ $n _| {d wV D$Om H$m ofU BVZr b ~r X [a`m| VH$ eham| _| {H$`m OmVm h & `mdVu Ymam H$mo C dmo Q>Vm VH$ CR>m`m OmVm h VWm eham| _| J mhr WmZm| na `w{ $`m| H$m MmbZ H$aZo Ho$ {bE dmo Q>Vm H$mo KQ>m`m OmVm h & BgHo$ n[aUm_ d $n D$Om H$s ~h V H$_ hm{Z hmoVr h & JrVm Zo {ejH$ _hmoX` H$s ~mV H$mo `mZnyd H$ gwZm Am a `mdVu Ymam H$mo H$_ AWdm A{YH$ dmo Q>Vm _| H$aZo Ho$ {df` _| CZgo Z nyN>o & (a) `mdVu dmo Q>Vm H$mo C AWdm {Z Z _mZ VH$ n[ad{V V H$aZo H$s `w{ $ H$m Zm_ {b{IE & Bg `w{ $ _| e{ $ j` Ho$ EH$ H$maU H$m C oI H$s{OE & (b) {H$gr CXmhaU H$s ghm`Vm go `m `m H$s{OE {H$ {X Q> Ymam H$s Anojm `mdVu Ymam Ho$ $n _| b ~r X [a`m| VH$ D$Om Ho$ ofU _| e{ $ H$s hm{Z {H$g H$ma KQ> OmVr h & (c) JrVm Am a {ejH$ _hmoX` `oH$ mam X{e V Xmo _y `m| H$m C oI H$s{OE & The teachers of Geeta s school took the students on a study trip to a power generating station, located nearly 200 km away from the city. The teacher explained that electrical energy is transmitted over such a long distance to their city, in the form of alternating current (ac) raised to a high voltage. At the receiving end in the city, the voltage is reduced to operate the devices. As a result, the power loss is reduced. Geeta listened to the teacher and asked questions about how the ac is converted to a higher or lower voltage. (a) Name the device used to change the alternating voltage to a higher or lower value. State one cause for power dissipation in this device. (b) Explain with an example, how power loss is reduced if the energy is transmitted over long distances as an alternating current rather than a direct current. (c) 55/1 Write two values each shown by the teachers and Geeta. 14 4 I S> ` SECTION E 24. (a) {d wV b g H$s n[a^mfm Xr{OE & `m `h g{Xe am{e h AWdm A{Xe AmaoI _| Xem E AZwgma H$moB {~ X Amdoe q ^wOm d ? Ho$ {H$gr dJ Ho$ Ho$ Ho$ R>rH$ D$na X ar d/2 na p WV h & JmCg Ho$ {Z`_ H$m Cn`moJ H$aHo$ Bg dJ go Jw OaZo dmbo {d wV b g Ho$ {bE ` OH$ m V H$s{OE & (b) A~ `{X Bg {~ X Amdoe H$mo Bg dJ Ho$ Ho$ go d X ar na bo OmE VWm dJ H$s ^wOm H$mo X JwZm H$a X|, Vmo `m `m H$s{OE {H$ {d wV b g {H$g H$ma ^m{dV 5 hmoJm & AWdm (a) Amdo{eV AZ V aoIm Ho$ H$maU {d wV -jo (b) Amdoe aoIm go b ~dV X ar It{ME & (c) b ~dV X ar r1 go r2 VH$ r Ho$ gmW (r2 > r1) E Amdoe Ho$ {dMaU H$mo Xem Zo Ho$ {bE J m \$$ q H$mo bo OmZo _| {H$`m J`m H$m` kmV 5 H$s{OE & 55/1 C/m H$s {H$gr grYr EH$g_mZ ( E ) Ho$ {bE ` OH$ `w n H$s{OE & JmCg Ho$ {Z`_ H$m Cn`moJ H$aHo$ Amdoe KZ d 15 P.T.O. (a) Define electric flux. Is it a scalar or a vector quantity ? A point charge q is at a distance of d/2 directly above the centre of a square of side d, as shown in the figure. Use Gauss law to obtain the expression for the electric flux through the square. (b) If the point charge is now moved to a distance d from the centre of the square and the side of the square is doubled, explain how the electric flux will be affected. OR (a) Use Gauss law to derive the expression for the electric field ( E ) due to a straight uniformly charged infinite line of charge density C/m. (b) Draw a graph to show the variation of E with perpendicular distance r from the line of charge. (c) Find the work done in bringing a charge q from perpendicular distance r1 to r2 (r2 > r1). 55/1 16 25. (a) {H$gr `mdVu Ymam (ac) O{Z H$m {g m V {b{IE Am a Zm_m {H$V AmaoI H$s ghm`Vm go BgH$s {H $`m{d{Y H$s `m `m H$s{OE & KyU Z Aj Ho$ b ~dV {X{eH$ {H$gr Mw ~H$s` jo B _| {Z`V H$moUr` Mmb go KyU Z H$aZo dmbr N bnoQ>m| Am a AZw W-H$mQ> jo \$b A H$s {H$gr Hw$ S>br _| o[aV {d wV -dmhH$ ~b (emf) Ho$ {bE ` OH$ m V H$s{OE & (b) H$moB dm`w`mZ 900 km/hour Ho$ doJ go j {VOV: np M_ go nyd H$s Amoa C S> ahm h & 20 m {d Vma H$s BgH$s n Iw{ S>`m| Ho$ {gam| Ho$ ~rM {dH${gV {d^dm Va n[aH${bV H$s{OE & n dr Ho$ Mw ~H$s` jo H$m j {VO KQ>H$ 5 10 4 T Am a Z{V H$moU 30 h & AWdm H$moB `w{ $ X {H$gr `mdVu Ymam (ac) moV V = V0 sin t dmo Q>Vm go g `mo{OV h & X go dm{hV Ymam I = I0 sin t 2 (a) `w{ $ H$mo nhMm{ZE Am a BgHo$ {VKmV Ho$ {bE ` OH$ {b{IE & (b) X (c) `mdVu Ymam (ac) H$s Amd { m Ho$ gmW `w{ $ hmoVm h ? J m \$ mam Bg {dMaU H$mo Xem BE & (d) `w{ $ (a) State the principle of an ac generator and explain its working with X 5 h & Ho$ {bE `mdVu Ymam (ac) Ho$ EH$ MH $ _| g_` Ho$ gmW dmo Q>Vm Am a Ymam Ho$ {dMaU H$mo Xem Zo Ho$ {bE J m \$ It{ME & X Ho$ X Ho$ {VKmV _| {H$g H$ma {dMaU 5 {bE \o$ Oa AmaoI It{ME & the help of a labelled diagram. Obtain the expression for the emf induced in a coil having N turns each of cross-sectional area A, rotating with a constant angular speed in a magnetic field B , directed perpendicular to the axis of rotation. (b) An aeroplane is flying horizontally from west to east with a velocity of 900 km/hour. Calculate the potential difference developed between the ends of its wings having a span of 20 m. The horizontal component of the Earth s magnetic field is 5 10 4 T and the angle of dip is 30 . OR 55/1 17 P.T.O. A device X is connected across an ac source of voltage V = V0 sin t. The current through X is given as I = I0 sin t . 2 (a) Identify the device X and write the expression for its reactance. (b) Draw graphs showing variation of voltage and current with time over one cycle of ac, for X. (c) How does the reactance of the device X vary with frequency of the ac ? Show this variation graphically. 26. (d) Draw the phasor diagram for the device X. (a) {H$gr AdVb Xn U mam {H$gr {~ ~ H$m dm V{dH$, C Q>m VWm {dd{Y V {V{~ ~ ~ZZm Xem Zo Ho$ {bE {H$aU AmaoI It{ME & (b) Xn U gy m V H$s{OE Am a a {IH$ AmdY Z Ho$ {bE ` OH$ {b{IE & (c) AndVu X aXe H$ H$s VwbZm _| namdVu X aXe H$ Ho$ Xmo bm^m| H$s `m `m H$s{OE & 5 AWdm 55/1 (a) Va JmJ H$s n[a^mfm Xr{OE & hmBJo g Ho$ {g m V H$m Cn`moJ H$aHo$ g_Vb n R> na namdV Z Ho$ {Z`_m| H$m g `mnZ H$s{OE & (b) EH$b {Par {ddV Z `moJ _| {Par H$s Mm S>mB CgH$s _yb Mm S>mB H$s X JwZr H$s OmVr h & Ho$ r` {ddV Z ~ S> Ho$ gmB O Am a Vrd Vm na BgH$m `m ^md hmoJm ? `m `m H$s{OE & (c) O~ {H$gr X a W moV go AmVo h E H$me Ho$ nW _| H$moB Z hr (bKw) d mmH$ma ~mYm aI Xr OmVr h , Vmo Cg ~mYm Ho$ Ho$ na H$moB M_H$Xma {M mr p Q>JmoMa hmoVr h & `m `m H$s{OE, Eogm `m| h & 18 5 (a) Draw a ray diagram to show image formation when the concave mirror produces a real, inverted and magnified image of the object. (b) Obtain the mirror formula and write the expression for the linear magnification. (c) Explain two advantages of a reflecting telescope over a refracting telescope. OR (a) Define a wavefront. Using Huygens principle, verify the laws of reflection at a plane surface. (b) In a single slit diffraction experiment, the width of the slit is made double the original width. How does this affect the size and intensity of the central diffraction band ? Explain. (c) When a tiny circular obstacle is placed in the path of light from a distant source, a bright spot is seen at the centre of the obstacle. Explain why. 55/1 19 P.T.O.

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 


Tags : cbse, cbse papers, cbse sample papers, cbse books, portal for cbse india, cbse question bank, central board of secondary education, cbse question papers with answers, prelims preliminary exams, pre board exam papers, cbse model test papers, solved board question papers of cbse last year, previous years solved question papers, free online cbse solved question paper, cbse syllabus, india cbse board sample questions papers, last 10 years cbse papers, cbse question papers 2017, cbse guess sample questions papers, cbse important questions, specimen / mock papers 2018.  

© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

cbse12 chat