Trending ▼   ResFinder  

CBSE Class 10 Board Exam 2020 : Mathematics Standard (Series 5)

23 pages, 90 questions, 0 questions with responses, 0 total responses,    0    0
CBSE 10
Kendriya Vidyalaya (KV), Kamla Nehru Nagar, Ghaziabad
+Fave Message
 Home > CBSE - main folder >

Instantly get Model Answers to questions on this ResPaper. Try now!
NEW ResPaper Exclusive!

Formatting page ...

H$moS> Z . Code No. amob Z . 30/5/1 narjmWu H$moS >H$mo C ma-nwp VH$m Ho$ _wI-n >na Ad ` {bIo & Roll No. Candidates must write the Code on the title page of the answer-book. (I) ZmoQ> H $n`m Om M H$a b| {H$ Bg Z-n _o _w{ V n > 23 h & (II) Z-n _| Xm{hZo hmW H$s Amoa {XE JE H$moS >Z ~a H$mo N>m C ma-nwp VH$m Ho$ _wI-n > na {bI| & (III) H $n`m Om M H$a b| {H$ Bg Z-n _| >40 Z h & H $n`m Z H$m C ma {bIZm ew $ H$aZo go nhbo, C ma-nwp VH$m _| Z H$m H $_m H$ Ad ` {bI| & Bg Z-n H$mo n T>Zo Ho$ {bE 15 {_ZQ >H$m g_` {X`m J`m h & Z-n H$m {dVaU nydm _| 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>m Ho$db Z-n H$mo n T>|Jo Am a Bg Ad{Y Ho$ Xm amZ do C ma-nwp VH$m na H$moB C ma Zht {bI|Jo & (IV) (V) NOTE (I) Please check that this question paper contains 23 printed pages. (II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. (III) Please check that this question paper contains 40 questions. (IV) Please write down the Serial Number of the question in the answer-book before attempting it. (V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. J{UV ( mZH$) g mp VH$ MATHEMATICS (STANDARD) Theory {ZYm [aV g_` : 3 K Q>o A{YH$V_ A H$ : 80 Time allowed : 3 hours .30/5/1 Maximum Marks : 80 1 P.T.O. gm_m ` {ZX}e : {Z Z{b{IV {ZX}em| H$mo ~h V gmdYmZr go n{ T>E Am a CZH$m g Vr go nmbZ H$s{OE : (i) `h Z-n Mma I S>m| _| {d^m{OV {H$`m J`m h H$, I, J Ed K & Bg Z-n _| 40 Z h & g^r Z A{Zdm` h & (ii) I S> H$ _| Z g `m 1 go 20 VH$ 20 Z h Ed `oH$ Z EH$ A H$ H$m h & (iii) I S> I _| Z g `m 21 go 26 VH$ 6 Z h Ed `oH$ Z Xmo A H$m| H$m h & (iv) I S> J _| Z g `m 27 go 34 VH$ 8 Z h Ed `oH$ Z VrZ A H$m| H$m h & (v) I S> K _| Z g `m 35 go 40 VH$ 6 Z h Ed `oH$ Z Mma A H$m| H$m h & (vi) Z-n _| g_J na H$moB {dH$ n Zht h & VWm{n EH$-EH$ A H$ dmbo Xmo Zm| _|, Xmo-Xmo A H$m| dmbo Xmo Zm| _|, VrZ-VrZ A H$m| dmbo VrZ Zm| _|, Mma-Mma A H$m| dmbo VrZ Zm| _| Am V[aH$ {dH$ n {XE JE h & Eogo Zm| _| Ho$db EH$ hr {dH$ n H$m C ma {b{IE & (vii) BgHo$ A{V[a $, Amd `H$VmZwgma, `oH$ I S> Am a Z Ho$ gmW `Wmo{MV {ZX}e {XE JE h & (viii) H $bHw$boQ>a Ho$ `moJ H$s AZw_{V Zht h & I S> H$ Z g `m 1 go 20 VH$ `oH$ Z 1 A H$ H$m h & Z g `m 1 go 10 VH$ ~h {dH$ nr` Z h & ghr {dH$ n Mw{ZE & 1. ~h nX p(x) H$mo x2 4 go {d^m{OV H$aZo na ^mJ $b VWm eof $b H $ e JE & ~h nX p(x) h (A) 3x2 + x 12 (B) x3 4x + 3 (C) x2 + 3x 4 (D) x3 4x 3 .30/5/1 2 x VWm 3 nmE General Instructions : Read the following instructions very carefully and strictly follow them : (i) This question paper comprises four sections A, B, C and D. This question paper carries 40 questions. All questions are compulsory. (ii) Section A : Question Numbers 1 to 20 comprises of 20 questions of one mark each. (iii) Section B : Question Numbers 21 to 26 comprises of 6 questions of two marks each. (iv) Section C : Question Numbers 27 to 34 comprises of 8 questions of three marks each. (v) Section D : Question Numbers 35 to 40 comprises of 6 questions of four marks each. (vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt only one of the choices in such questions. (vii) In addition to this, separate instructions are given with each section and question, wherever necessary. (viii) Use of calculators is not permitted. SECTION A Question numbers 1 to 20 carry 1 mark each. Question numbers 1 to 10 are multiple choice questions. Choose the correct option. 1. On dividing a polynomial p(x) by x2 4, quotient and remainder are found to be x and 3 respectively. The polynomial p(x) is (A) 3x2 + x 12 (B) x3 4x + 3 (C) x2 + 3x 4 (D) x3 4x 3 .30/5/1 3 P.T.O. 2. AmH ${V-1 |, ABC EH$ g { ~mh g H$moU { ^wO h {OgH$m g H$moU (A) AB2 = 2AC2 (B) BC2 = 2AB2 (C) AC2 = 2AB2 (D) AB2 = 4AC2 C na h & AV: AmH ${V-1 3. x-Aj na p WV dh q~X Omo (A) (7, 0) (B) (5, 0) (C) (0, 0) (D) (3, 0) ( 4, 0) VWm (10, 0) go g X a W h , Ho$ {ZX}em H$ h AWdm EH$ d m Ho$ Ho$ Ho$ {ZX}em H$, {OgHo$ EH$ mg Ho$ A ` q~X 4. (A) (8, 1) (B) (4, 7) (C) 7 0, 2 (D) 7 4, 2 {X { KmV g rH$aU (A) 4 (B) 4 (C) 4 (D) 0 .30/5/1 2x2 + kx + 2 = 0 Ho$ ( 6, 3) Am a (6, 4) h , yb g mZ hm|, Vmo k H$m _mZ h 4 hm|Jo 2. In Figure-1, ABC is an isosceles triangle, right-angled at C. Therefore (A) AB2 = 2AC2 (B) BC2 = 2AB2 (C) AC2 = 2AB2 (D) AB2 = 4AC2 Figure-1 3. The point on the x-axis which is equidistant from ( 4, 0) and (10, 0) is (A) (7, 0) (B) (5, 0) (C) (0, 0) (D) (3, 0) OR The centre of a circle whose end points of a diameter are ( 6, 3) and (6, 4) is (A) (8, 1) (B) (4, 7) 4. (C) 7 0, 2 (D) 7 4, 2 The value(s) of k for which the quadratic equation 2x2 + kx + 2 = 0 has equal roots, is (A) 4 (B) 4 (C) 4 (D) 0 .30/5/1 5 P.T.O. 5. 6. 7. {Z Z{b{IV | go H$m Z-gr g m Va loT>r Zht h (A) 1 2, 0 8, 2 8, ... (B) 3, 3 + 2 , 3 + 2 2 , 3 + 3 2 , ... (C) 4 7 9 12 , , , , ... 3 3 3 3 (D) 1 2 3 , , , ... 5 5 5 a {IH$ g rH$aUm| 3x 5y 7 2 3 VWm (A) g JV h (B) Ag JV h (C) g JV h VWm {g \ $ EH$ hb h (D) g JV h VWm AZoH$ hb h AmH ${V-2 |, 9x + 10y = 14 H$m O Ho$ dmbo d m na, q~X AOB = 100 h , Vmo ABP ~am~a h (A) 50 (B) 40 (C) 60 (D) 80 AmH ${V-2 .30/5/1 ? 6 B w na ne -aoIm PQ ItMr JB h & {X 5. 6. Which of the following is not an A.P. ? (A) 1 2, 0 8, 2 8, ... (B) 3, 3 + 2 , 3 + 2 2 , 3 + 3 2 , ... (C) 4 7 9 12 , , , , ... 3 3 3 3 (D) 1 2 3 , , , ... 5 5 5 The pair of linear equations 3x 5y 7 and 9x + 10y = 14 is 2 3 7. (A) consistent (B) inconsistent (C) consistent with one solution (D) consistent with many solutions In Figure-2, PQ is tangent to the circle with centre at O, at the point B. If AOB = 100 , then ABP is equal to (A) 50 (B) 40 (C) 60 (D) 80 Figure-2 .30/5/1 7 P.T.O. 8. 9. 12 KZ (A) 3 (B) 3 3 (C) 32/3 (D) 31/3 q~X Am| (m, n) VWm ( m, n) Ho$ (A) ~rM H$s X ar h m2 n2 (B) m+n (C) 2 m2 n2 (D) 10. go r Am VZ dmbo Jmobo H$s { m (go r |) h 2m 2 2n 2 AmH ${V-3 |, O Ho$ dmbo d m na ~m q~X P go Xmo ne -aoImE PQ VWm PR ItMr JB h & d m H$s { m 4 go r h & `{X QPR = 90 h , Vmo PQ H$s b ~mB hmoJr (A) 3 go r (B) 4 go r (C) 2 go r (D) 2 2 go r AmH ${V- 3 .30/5/1 8 8. 9. The radius of a sphere (in cm) whose volume is 12 cm3, is (A) 3 (B) 3 3 (C) 32/3 (D) 31/3 The distance between the points (m, n) and ( m, n) is (A) (B) m+n (C) 2 m2 n2 (D) 10. m2 n2 2m 2 2n 2 In Figure-3, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4 cm with centre O. If QPR = 90 , then length of PQ is (A) 3 cm (B) 4 cm (C) 2 cm (D) 2 2 cm Figure-3 .30/5/1 9 P.T.O. Z g `m 11 go 15 _| [a $ WmZ ^[aE & 11. EH$ {Zp MV KQ>Zo dmbr KQ>Zm H$s m{ H$Vm 12. gabV $n | 13. AOBC 14. gy 15. g^r g Ho$ r d m na na 1 tan2 A 1 cot 2 A _________ hmoVr = _________ h EH$ Am V h {OgHo$ VrZ erf -q~X {dH$U H$s b ~mB _________ h & f u _ x a i i h f i h & & A(0, 3), O(0, 0) Ed B(4, 0) h & BgHo$ |, ui = _________ & _________ hmoVo h & Z g `m 16 go 20 _| {Z Z{b{IV Ho$ C ma Xr{OE & 16. W 100 mH $V 17. AmH ${V-4 |, ^y{_ Ho$ EH$ q~X C go, Omo rZma Ho$ nmX-q~X go 30 r. X a h , EH$ rZma Ho$ {eIa H$m C Z H$moU 30 h & rZma H$s D $MmB kmV H$s{OE & g mAm| H$m moJ\$b kmV H$s{OE & AmH ${V- 4 18. Xmo g mAm| H$m b.g. (LCM) 182 h VWm CZH$m .g. 26 h , Vmo X gar g m kmV H$s{OE & .30/5/1 10 (HCF) 13 h & {X EH$ g m Fill in the blanks in question numbers 11 to 15. 11. The probability of an event that is sure to happen, is _________ . 12. Simplest form of 13. AOBC is a rectangle whose three vertices are A(0, 3), O(0, 0) and 1 tan2 A 1 cot 2 A is _________ . B(4, 0). The length of its diagonal is ____________ . 14. f u _ In the formula x a i i h, ui = ___________. f i 15. All concentric circles are _________ to each other. Answer the following question numbers 16 to 20. 16. Find the sum of the first 100 natural numbers. 17. In Figure-4, the angle of elevation of the top of a tower from a point C on the ground, which is 30 m away from the foot of the tower, is 30 . Find the height of the tower. Figure-4 18. The LCM of two numbers is 182 and their HCF is 13. If one of the numbers is 26, find the other. .30/5/1 11 P.T.O. 19. EH$ { KmV ~h nX kmV H$s{OE {OgHo$ ey H$m| H$m moJ\$b VWm JwUZ $b H $ e ( 3) VWm 2 h & AWdm m h g ^d h {H$ ~h nX x4 3x2 + 5x 9 H$mo (x2 + 3) go {d^m{OV H$aZo na eof $b (x2 1) hmo ? AnZo C ma H$m H$maU Xr{OE & 20. mZ kmV H$s{OE : 2 tan 45 cos 60 sin 30 I S> I$ Z g `m 21 go 26 VH$ `oH$ Z 2 A H$m| H$m h & 21. Xr JB AmH ${V-5 |, DE AC h VWm DF AE h & {g H$s{OE {H$ BF BE . FE EC AmH ${V- 5 22. Xem BE {H$ g m 5 An[a o g m h & + 2 7 EH$ An[a o g m h , Ohm {X m J m h {H$ AWdm Om M H$s{OE {H$ m {H$gr mH $V g m n Ho$ {bE, g m gH$Vr h & 23. {X A, B VWm C {H$gr ABC Ho$ A H$ Am V[aH$ H$moU h , Vmo {g H$s{OE {H$ B C A cos = sin . 2 2 .30/5/1 12n 12 0 7 EH$ na g m V hmo 19. Form a quadratic polynomial, the sum and product of whose zeroes are ( 3) and 2 respectively. OR Can (x2 1) be a remainder while dividing x4 3x2 + 5x 9 by (x2 + 3) ? Justify your answer with reasons. 20. Evaluate : 2 tan 45 cos 60 sin 30 SECTION B Question numbers 21 to 26 carry 2 marks each. 21. In the given Figure-5, DE AC and DF AE. Prove that BF BE . FE EC Figure-5 22. Show that 5 + 2 7 is an irrational number, where irrational number. 7 is given to be an OR Check whether 12n can end with the digit 0 for any natural number n. 23. If A, B and C are interior angles of a ABC, then show that B C A cos = sin . 2 2 .30/5/1 13 P.T.O. 24. AmH ${V-6 |, EH$ d m Ho$ n[aJV EH$ MVw^w O ABCD ItMm J m h & {g H$s{OE {H$ AB + CD = BC + AD. AmH ${V- 6 AWdm AmH ${V-7 |, ABC H$m n[a mn kmV H$s{OE, {X AP = 12 go r h & AmH ${V-7 25. {Z Z{b{IV ~ Q>Z H$m ~h bH$ kmV H$s{OE m Vm H$ : N>m m| H$s g m 26. : : 0 10 10 20 20 30 30 40 40 50 50 60 4 6 7 12 5 6 Xmo KZm|, {OZ | oH$ H$m Am VZ 125 KZ go r h , Ho$ g b Z $bH$m| H$mo { bmH$a EH$ KZm^ ~Zm m OmVm h & Bg m V KZm^ H$m n R>r jo $b kmV H$s{OE & .30/5/1 14 24. In Figure-6, a quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = BC + AD. Figure-6 OR In Figure-7, find the perimeter of ABC, if AP = 12 cm. Figure-7 25. Find the mode of the following distribution : Marks : Number of Students : 26. 0 10 10 20 20 30 30 40 40 50 50 60 4 6 7 12 5 6 2 cubes, each of volume 125 cm3, are joined end to end. Find the surface area of the resulting cuboid. .30/5/1 15 P.T.O. I S> J$ Z g `m 27 go 34 VH$ `oH$ Z 3 A H$m| H$m h & 27. {X {H$gr {^ Ho$ A e | go Omo S>Zo na {^ 1 KQ>m m OmE Vmo {^ 1 4 1 3 hmo OmVr h VWm BgHo$ ha | 8 hmo OmVr h & {^ kmV H$s{OE & AWdm EH$ {nVm H$s dV mZ Am w, AnZo nw H$s Am w Ho$ VrZ JwZo go VrZ df A{YH$ h & VrZ df Ho$ ~mX {nVm H$s Am w nw H$s Am w Ho$ X JwZo go 10 df A{YH$ hmoJr & CZH$s dV mZ Am w kmV H$s{OE & 28. yp bS> {d^mOZ o{ H$m H$m moJ H$aHo$ Xem BE {H$ {H$gr YZm H$ nyUm H$ H$m dJ , {H$gr nyUm H$ q Ho$ {bE 3q m 3q + 1 Ho$ $n H$m hmoVm h & 29. q~X Am| (6, 4) VWm ( 2, 7) H$mo Omo S>Zo dmbo aoImI S> H$mo y-Aj {H$g AZwnmV | {d^m{OV H$aVr h ? Bg {V N>oX q~X Ho$ {ZX}em H$ ^r kmV H$s{OE & AWdm Xem BE {H$ q~X (7, 10), ( 2, 5) VWm (3, 4) EH$ g { ~mh g H$moU { ^wO Ho$ erf -q~X h & 30. {g H$s{OE {H$ : 1 sin A = sec A + tan A 1 sin A 31. {H$gr g m Va loT>r Ho$ {bE {X m J`m h {H$ W nX (a) = 5, gmd A Va (d) = 3, VWm ndm nX (an) = 50 h & Bg g m Va loT>r Ho$ {bE n VWm W n nXm| H$m moJ\$b (Sn) kmV H$s{OE & 32. EH$ ABC H$s aMZm H$s{OE {OgH$s ABC = 60 h & { $a EH$ Eogo { ^wO g JV ^wOmAm| H$s 3 JwZr hm| & 4 ^wOmE BC = 6 go r, AB = H$s aMZm H$s{OE {OgH$s ^wOmE 5 go r VWm ABC H$s AWdm 3 5 go_r { m H$m EH$ d m It{ME & d m Ho$ H|$ go 7 go r H$s X ar na {H$gr ~m q~X go Bg d m na Xmo ne -aoImAm| H$s aMZm H$s{OE & .30/5/1 16 P SECTION C Question numbers 27 to 34 carry 3 marks each. 27. A fraction becomes becomes 1 when 1 is subtracted from the numerator and it 3 1 when 8 is added to its denominator. Find the fraction. 4 OR The present age of a father is three years more than three times the age of his son. Three years hence the father s age will be 10 years more than twice the age of the son. Determine their present ages. 28. Use Euclid Division Lemma to show that the square of any positive integer is either of the form 3q or 3q + 1 for some integer q. 29. Find the ratio in which the y-axis divides the line segment joining the points (6, 4) and ( 2, 7). Also find the point of intersection. OR Show that the points (7, 10), ( 2, 5) and (3, 4) are vertices of an isosceles right triangle. 30. Prove that : 1 sin A = sec A + tan A 1 sin A 31. For an A.P., it is given that the first term (a) = 5, common difference (d) = 3, and the nth term (an) = 50. Find n and sum of first n terms (Sn) of the A.P. 32. Construct a ABC with sides BC = 6 cm, AB = 5 cm and ABC = 60 . 3 Then construct a triangle whose sides are of the corresponding sides of 4 ABC. OR Draw a circle of radius 3 5 cm. Take a point P outside the circle at a distance of 7 cm from the centre of the circle and construct a pair of tangents to the circle from that point. .30/5/1 17 P.T.O. 33. {Z Z{b{IV AZw N>oX H$mo n T>H$a A V | {XE JE Zm| Ho$ C ma Xr{OE : {Xdmbr obm {Xdmbr obo Ho$ EH$ ~yW Ho$ EH$ Iob | nhbo EH$ p nZa H$m moJ {H$ m OmVm h Am a CgHo$ ~mX {X p nZa EH$ g g m na H$Vm h , Vmo {Ibm S>r H$mo EH$ W bo | go EH$ H $Mm MwZZo {X m OmVm h & p nZa VWm W bo | H $Mo Xr JB AmH ${V-8 | {XImE JE h & {X H$mbo a J H$m H $Mm MwZm OmVm h , Vmo BZm {XE OmVo h & doVm EH$ ~ma Iob IobVr h & AmH ${V- 8 34. (i) m{ H$Vm m h {H$ Cgo W bo | go H $Mm MwZZo {X m OmEJm ? (ii) mZm Cgo W bo _| go H $Mm MwZZo {X m OmVm h , Vmo CgHo$ BZm nmZo H$s m{ H$Vm m h , O~ {X m J`m h {H$ W bo | 20 H $Mo h {OZ | go 6 H$mbo h ? AmH ${V-9 |, EH$ d m H$m MVwWm e OAQB Ho$ A VJ V EH$ dJ OPQR ~Zm h Am h & {X d m H$s { m 6 2 go r hmo, Vmo N>m m {H$V ^mJ H$m jo $b kmV H$s{OE & AmH ${V- 9 .30/5/1 18 33. Read the following passage and answer the questions given at the end : Diwali Fair A game in a booth at a Diwali Fair involves using a spinner first. Then, if the spinner stops on an even number, the player is allowed to pick a marble from a bag. The spinner and the marbles in the bag are represented in Figure-8. Prizes are given, when a black marble is picked. Shweta plays the game once. Figure-8 34. (i) What is the probability that she will be allowed to pick a marble from the bag ? (ii) Suppose she is allowed to pick a marble from the bag, what is the probability of getting a prize, when it is given that the bag contains 20 balls out of which 6 are black ? In Figure-9, a square OPQR is inscribed in a quadrant OAQB of a circle. If the radius of circle is 6 2 cm, find the area of the shaded region. Figure-9 .30/5/1 19 P.T.O. I S> K$ Z g `m 35 go 40 VH$ `oH$ Z 4 A H$m| H$m h & 35. ~h nX p(x) = 2x4 x3 11x2 + 5x + 5 Ho$ Xmo ey H$ Ho$ A ` Xmo ey H$ kmV H$s{OE & 5 VWm 5 h & Bg ~h nX AWdm ~h nX 2x3 3x2 + 6x + 7 | H$ -go-H$ m Omo S>m OmE {H$ m V ~h nX go nyU V m {d^m{OV hmo OmE ? x2 4x + 8 36. {g H$s{OE {H$ Xmo g $n { ^wOm| Ho$ jo $bm| H$m AZwnmV BZH$s g JV ^wOmAm| Ho$ AZwnmV Ho$ dJ Ho$ ~am~a hmoVm h & 37. Xmo dJm] Ho$ jo $bm| H$m moJ\$b 544 dJ r. h & {X CZHo$ n[a mnm| | hmo, Vmo XmoZm| dJm] H$s ^wOmE kmV H$s{OE & 32 r. H$m A Va AWdm EH$ moQ>a~moQ>, {OgH$s p Wa Ob | Mmb 18 {H$ r/K Q>m h , 24 {H$ r Ymam Ho$ {VHy$b OmZo |, dhr X ar Ymam Ho$ AZwHy$b OmZo H$s Anojm 1 K Q>m A{YH$ boVr h & Ymam H$s Mmb kmV H$s{OE & 38. EH$ R>mog {Ibm Zm 7 go r AmYma { m dmbo EH$ b ~-d mr` e Hw$ Ho$ AmH$ma H$m h Omo Cgr { m dmbo EH$ AY Jmobo na A mamo{nV h & {X e Hw$ H$s D $MmB 10 go r hmo, Vmo {Ibm Zo H$m Am VZ kmV H$s{OE & Cg a JrZ H$m J O H$m jo $b ^r kmV H$s{OE {Oggo Bg {Ibm Zo H$mo nyar Vah go T> H$m Om gHo$ & ( = 22 VWm 149 = 12 2 moJ H$s{OE) 7 39. EH$ noS> Q>b Ho$ {eIa na 1 6 r. D $Mr y{V bJr h B h & ^y{ Ho$ EH$ q~X go y{V Ho$ {eIa H$m C Z H$moU 60 h Am a Cgr q~X go noS> Q>b Ho$ {eIa H$m C Z H$moU 45 h & noS> Q>b H$s D $MmB kmV H$s{OE & ( 3 = 1 73 `moJ H$s{OE) .30/5/1 20 SECTION D Question numbers 35 to 40 carry 4 marks each. 35. Obtain other zeroes of the polynomial p(x) = 2x4 x3 11x2 + 5x + 5 if two of its zeroes are 5 and 5. OR What minimum must be added to 2x3 3x2 + 6x + 7 so that the resulting polynomial will be divisible by x2 4x + 8 ? 36. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. 37. Sum of the areas of two squares is 544 m2. If the difference of their perimeters is 32 m, find the sides of the two squares. OR A motorboat whose speed is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream. 38. A solid toy is in the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 cm and the radius of the base is 7 cm. Determine the volume of the toy. Also find the area of the 22 coloured sheet required to cover the toy. (Use = and 149 = 12 2) 7 39. A statue 1 6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60 and from the same point the angle of elevation of the top of the pedestal is 45 . Find the height of the pedestal. (Use 3 = 1 73) .30/5/1 21 P.T.O. 40. {Z Z{b{IV Am H$ S>m| Ho$ {bE go H$ H$ma H$m VmoaU It{ME & AV: ~ Q>Z H$m m H$ kmV H$s{OE & Am w (dfm] |) : { V m| H$s g m : 0 10 5 10 20 20 30 30 40 40 50 50 60 60 70 15 20 25 15 11 9 AWdm ZrMo {X m J`m ~ Q>Z EH$-{Xdgr {H $Ho$Q> _ Mm| |, J|X~m Om| mam {bE JE {dHo$Q>m| H$s g m Xem Vm h & {bE JE {dHo$Q>m| H$s g `m H$m _m ` VWm m H$ kmV H$s{OE & {dHo$Q>m| H$s g m : J|X~m Om| H$s g m : .30/5/1 20 60 60 100 100 140 140 180 180 220 220 260 7 5 16 22 12 2 3 40. For the following data, draw a less than ogive and hence find the median of the distribution. Age (in years) : 0 10 Number of persons : 5 10 20 20 30 30 40 40 50 50 60 60 70 15 20 25 15 11 9 OR The distribution given below shows the number of wickets taken by bowlers in one-day cricket matches. Find the mean and the median of the number of wickets taken. Number of wickets : Number of bowlers : .30/5/1 20 60 60 100 100 140 140 180 180 220 220 260 7 5 16 23 12 2 3 P.T.O.

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 


Tags : INDIA - OUTSIDE DELHI, cbse class x, cbse 10, cbse 10th standard, cbse papers, cbse sample papers, cbse books, portal for cbse india, cbse question bank, central board of secondary education, cbse question papers with answers, prelims preliminary exams, pre board exam papers, cbse model test papers, solved board question papers of cbse last year, previous years solved question papers, free online cbse solved question paper, cbse syllabus, india cbse board sample questions papers, last 10 years cbse papers, cbse question papers 2017, cbse guess sample questions papers, cbse important questions, specimen / mock papers 2018.  

© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

cbse10 chat