Trending ▼   ResFinder  

8th National Certification Exam Energy Managers & Auditors MAY 2009 Paper 4

10 pages, 25 questions, 0 questions with responses, 0 total responses,    0    0
bee_energy
Jawaharlal Nehru Technological University (JNTUH), Hyderabad
+Fave Message
 Home > bee_energy >

Instantly get Model Answers to questions on this ResPaper. Try now!
NEW ResPaper Exclusive!

Formatting page ...

Paper 4 Energy Auditor Set A Key Regn No: _________________ Name: ___________________ (To be written by the candidates) 8th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS May, 2009 PAPER 4: ENERGY PERFORMANCE ASSESSMENT FOR EQUIPMENT AND UTILITY SYSTEMS Date: 24.05.2009 Timings: 1400-1600 HRS Duration: 2 HRS Max. Marks: 100 General instructions: o o o o o Please check that this question paper contains 6 printed pages Please check that this question paper contains 16 questions The question paper is divided into three sections All questions in all three sections are compulsory All parts of a question should be answered at one place Section - I: SHORT DESCRIPTIVE QUESTIONS Marks: 10 x 1 = 10 (i) Answer all Ten questions (ii) Each question carries One mark (iii) Answer should not exceed 50 words S-1 Between a thermal power plant and a cogeneration plant with a back pressure turbine, which will have a higher heat rate? Ans: A cogeneration plant will have a higher heat rate S-2 Which loss is considered the most unreliable or complicated to measure in electric motor efficiency testing? Ans. The stray load loss, because this loss is only estimated and not measured S-3 How is the Overall Heat transfer Coefficient related to surface area? Ans Inversely proportional. S-4 The inclined manometer connected to a pitot tube is sensing which pressure in a gas stream? 1 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key Ans: The difference between total and static pressure (also called velocity pressure) S-5 The more fouling fluid should be on which side of a shell & tube heat exchanger and why? Ans. Tube side, because it is easier to clean S-6 For which fuel the sulphur dew point of the flue gases is lower: Furnace oil or Natural gas. Ans : Natural gas , because the sulphur content is less S-7 What is the range of conversion efficiency of the gasification process using biomass? Ans. 60 - 70 % S-8 Calculate the annual power generated from a 100 kW wind turbine generator with a capacity factor of 20% ? Ans : 100 x .20 x 8760 = 175200 kWhr S-9 Define Profitability Index? Ans. Profitability Index is defined as the Sum of the discounted net savings to the Capital Cost S-10 In a power plant boiler if there is air ingress in the flue duct, which auxiliary system would be most affected? Ans: Induced Draft Fan -------- End of Section - III --------- Section - II: (i) (ii) Long Questions Marks: 2 x 5 = 10 Answer all Two questions Each question carries Five marks L-1 The suction head of a pump is 5 m below the pump centerline. The discharge pressure is 4 kg/cm2. The flow rate of water is 100 m3 /hr. Find out the pump efficiency if the actual power input at the shaft is 15 kW. Ans: Discharge Head = 4 kg/cm2 Suction Head = 40 metre head. = - 5 metre. 2 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key Total Head = 40 (-5) = 45 metre Hydraulic Power = (100/3600) x 1000 x 9.81 x 45/1000 = 12.26 kW = 100 x 12.26/15 = 81.7 % Pump Efficiency L-2. Calculate the blow down rate for a boiler with an evaporation rate of 3 tons/hr, if the maximum permissible TDS in boiler water is 3000 ppm. The make up water addition rate is 10 % and the feed water TDS is around 250 ppm. Ans. Blow down (%) = Percentage blow down Feed water TDS x % Makeup Permissibl e TDS in Boiler Feed water TDS = 250 X 10 0.91 % 3000 250 If boiler evaporation rate is 3000 kg/hr then required blow down rate is: = 3000 X 0.91 27 .3 kg / hr 100 OR Blow down (%) =Feed water TDS x % Makeup/ Permissible TDS in Boiler Percentage blow down = 250 x 10/ 3000 = 0.83% If boiler evaporation rate is 3000 kg/hr then required blow down rate is: = 3000 x .83/100 = 24.9 kg/hr -------- End of Section - II --------- Section - III: Numerical Questions Marks: 4 x 20 = 80 (i) Answer all Four questions (ii) Each question carries Twenty marks N-1 Government of India has undertaken various schemes to promote energy efficiency in the country. In the last one year implementation of these schemes have resulted in savings as given below: S. No. 1 Name of the scheme Energy Source Units Quantity Saved Energy Efficiency in Buildings Electricity from grid Million kWh 62 3 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key 2 3 4 Energy Efficiency in Industries Domestic Appliance Labelling Scheme Various other schemes as reported by different States exclusive of GOI schemes Electricity from Grid Electricity from Captive Diesel Generation Fuel Oil Coal Natural Gas Electricity from grid Electricity from grid Thermal Energy Saved Million kWh 1216 Million kWh 1000 Lakh kilo liter Lakh tons Lakh Sm3 Million kWh 1.85 Million kWh 635 MTOE 80702 3.5 15728 1374 Given that: 1 kWhr = 860 kCal GCV of Coal = 4000 kCal/ kg GCV of Natural Gas = 8500 k Cal/Sm3 Assuming GCV of fuel Oil & Diesel = 10000 kCal/kg Specific gravity of fuel Oil = 0.94, & for diesel 0.85 Assume average Transmission and Distribution Losses in India = 20% Average Plant Load Factor = 78% Specific diesel consumption = 3.5 kWh/ltr Calculate : i) Total Energy Saved in MTOE (metric ton oil equivalent) ii) Total Generation Capacity Avoided (in MW) in the country because of energy savings due to grid connected power. Ans: Total Electricity Saved from grid = 62 + 1216 + 1374 + 635 6 MTOE due to electrical savings = ( 3287 x 10 x 860 ) / 10 = 282682 MTOE = 3287 million kWh 7 MTOE due to coal savings= ( 3.5 x 10 5 x 1000 x 4000 ) / 10 7 = 140000 MTOE 5 MTOE due to natural gas savings= ( 15728 x 10 x 8500 ) / 10 7 = 1336880 MTOE 7 MTOE due to Fuel oil savings = ( 1.85 x 10 x 0.94 x 1000 x 10000 ) / 10 5 = 173900 MTOE MTOE due to captive diesel generation = 1000 x 106 x 0.85 x 10000 / 3.5 x 107 = 242857 MTOE 4 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key Total MTOE = 282682 + 140000 + 1336880 + 173900 + 80702 + 242857 = 2257021 MTOE ii) Grid Electricity Saved = (62 +1216 + 1374 + 635 ) million k Wh = = 3287 x 10 6 kWh Therefore Avoided Capacity = 3287 x 10 6 /( 0.78 x .80 x 365 x 24 x 1000 ) = 601.3 MW N-2 A pharma unit had installed a centralized refrigeration system of 120 TR Capacity several years ago. The refrigeration system operators 24 hours a day, 200 days per annum and the average electricity cost is Rs. 4.5/ kWh. The following are the key operational parameters. Compressor operating current and power factor : Condenser pump operating current and power factor: Chiller pump operating current and power factor : CT fan operating current and power factor : T across the chiller (evaporator) : Chilled water flow : Total head developed by chiller pump : Condenser water flow : Total head developed by condenser pump : 153 amps. 0.9 pf 43 amps, 0.88 pf 25 amps, 0.9 pf 20 amps. 0.65 pf 3.5OC 23 Lit / Sec 35 mtrs. 41 Lit / Sec 30 mtrs. PS: all the motors operate at 415 Volts: Calculate: The power consumed by the compressor, condenser pump, chiller pump and CT fan. TR developed by the system Specific power consumption i.e. overall kW/TR and COP and Energy Efficiency ratio (EER) Combined efficiency (motor and pump) of condenser and chiller pumps The unit proposes to replace the existing condenser and chilled water pumps with efficient pumps having a combined efficiency of 65%. Also the unit goes in for condenser cleaning by which the power consumption of compressor has reduced by 10%. Calculate: The envisaged power consumption of the compressor, condenser and chiller pump Hourly energy savings (compressor, condenser and chilled water pump) Annual energy and equivalent monetary savings (compressor, condenser and chilled water pump) Specific power consumption i.e. overall kW/ TR and COP and Energy Efficiency ratio (EER) Answer Present Condition: 5 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key Compressor Power Condenser Pump Power Chiller Pump Power CT Fan Total Power TR Devp Sp. Power Compressor kW/TR : : : : : : : : : 99 kW 27.2 kW 16.2 kW 9.4 kW 151.8 kW (23 * 3600 * 3.5 / 3024) = 95.83 1.58 kW/ TR 99/95.83 1.03 kW/tR COP EER : : : : : 3.516/kW/TR = 3.41 12/kW/TR 11.65 44.4% 48.8% Condenser pump efficiency Chiller pump efficiency Proposed condition: Compressor Power Condenser Pump Power Chiller Pump Power CT Fan Total Power TR Devp Sp. Power Compressor kW/TR COP EER : : : : : : : : : : 89 kW 18.6 KW 12.2 kW 9.4 kW 129.2 kW 95.83 TR i.e. (23 LPS * 3600 Sec * 3.5 / 3024) 1.35 kW/ TR 89/95.83 = 0.93 kW/TR 3.516 / 0.93 = 3.78 12 / 0.93 = 12.90 Compressor Hourly energy savings kWh (99-89) = 10 Annual energy savings kWh (4800 hrs) 48000 Annual monetary savings (Rs) @ Rs. 4.5/ 216000 kWh N-3 Condenser Pump (27.2-18.6) = 8.6 41280 185760 Chiller Pump (16.2 12.2) = 4.0 19200 86400 A fertilizer plant consuming 100TPH of saturated steam at 45 kg/sq.cm pressure has been using Indian coal as fuel to the boiler and is now switching over to Imported coal. Typical ultimate analysis of the two types of coals: -----------------------------------------------------------------------------------------------Parameters Indian coal Imported coal % % ------------------------------------------------------------------------------------------------Carbon 41.11 58.96 Hydrogen 2.76 4.16 Nitrogen 1.22 1.02 Oxygen 9.89 11.88 6 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key Sulphur 0.41 0.56 Moisture 5.98 9.43 Ash 38.63 13.99 --------------------------------------------------------------------------------------------------GCV (kCal/kg) 4,000 5,900 Determine: (i) Coal requirement in each case (ii) Calculate % dry flue gas losses in both cases Assume: in both cases Flue gas temperature = 200oC Ambient temperature = 30oC Enthalpy of steam = 668 kCal/kg Feed water temperature = 80oC Specific heat of flue gases = 0.23 Boiler efficiency with Indian coal = 75% Boiler efficiency with Imported coal = 82% Oxygen content in flue gases with Indian coal = 10% Oxygen content in flue gases with Imported coal = 4% Answer Coal requirement Q= Steam (q) x (hg hf) Efficiency x GCV Indian coal Q= Imported coal 100,000 x (668 80) 0.75 x 4000 Q= 100,000 x (668 80) 0.82 x 5900 19.6 T/hr 12.1 T/hr Find theoretical air requirement Indian coal = [(11.6 x C) + {34.8 x(H2 - O2/8)} + (4.35 x S)] 100 kg / kg of coal 7 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key For Indian coal = [(11.6 x 41.11) + {34.8 x(2.76 9.89/8)} + (4.35 x 0.41)] 100 = 5.3 kg / kg of coal For Imported Coal = [(11.6 x 58.96) + {34.8 x(4.16 11.88/8)} + (4.35 x .56)] 100 = 7.79 kg / kg of coal Excess air percentage in Indian coal = 10 x 100/ 21 - 10 = 90.9% Excess air percentage in Imported coal = 4 x 100/ 21 4 = 23.5% Actual mass of air (AAS) Kg/ kg of coal = 5.3 x 1.9 = 10.07 kg (Indian coal) = 7.79 x 1.235= 9.62 kg (Imported coal) Heat loss in dry flue gas = M x CP (Tf Ta) x 100 GCV - Indian coal = (10.07+1) x 0.23 x (200 30) x 100 4000 = 10.8% - Imported coal = (9.62+1) x 0.23 x (200 30) x 100 5900 = 7.04% Alternatively: Indian Coal : Mass of dry flue gas = Mass of (CO2 + SO2 + N2 + O2) in flue gas + N2 in air we supply = 0.4111x44 + 0.0041x64 + 0.0122 + 10.07x77 + {(10.07-5.3)x23/100} 12 32 100 = 10.38 kg/kg of fuel. Imported Coal: = 0.5896x44 + 0.0056x64 + 0.0102 + 9.62x77 + {(9.62- 7.79)x23/100} 12 32 100 = 10.01 kg/kg of fuel. Heat loss dry flue gas: Indian Coal: = 10.38 x 0.23 x (200 30) x 100 = 10.1% 4000 8 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key Imported Coal: = 10.01 x 0.23 x (200 30) x 100 = 6.63% 5900 N-4 The cost and estimated savings data for an energy saving retrofit project is given in table below. Retrofit cost Maintenance cost savings Rs. 1,00,000 Energy & demand savings 6000 kWh/year & Rs.3800/year as demand charges Annual maintenance cost savings will be Rs. 2000/-. The key data is given below: Energy savings are based on Rs 3.00/kWh No changes in energy rates for 10 years The project has a 10 year life period Calculate NPV for the upgrade option against 12% discount rate. Ans Cost of Energy & demand savings per year = 6000 x 3 + 3800 = Rs 21,800 The cash flow detail for ten year duration is given below: Year Retrofi t cost Cost of Energy & demand savings Maintenan ce cost savings Cash flow Discou nt Factor for 12% Present Value 0 100000 0 0 -100000 1.000 -100000 1 0 21800 +2000 23800 0.893 21253.4 2 0 21800 +2000 23800 0.797 18968.6 3 0 21800 +2000 23800 0.712 16945.6 4 0 21800 +2000 23800 0.636 15136.8 5 0 21800 +2000 23800 0.567 13494.6 6 0 21800 +2000 23800 0.507 12066.6 7 0 21800 +2000 23800 0.452 10757.6 8 0 21800 +2000 23800 0.404 9615.2 9 0 21800 +2000 23800 0.361 8591.8 10 0 21800 +2000 23800 0.322 7663.6 9 _____________________ Bureau of Energy Efficiency Paper 4 Energy Auditor Set A Key Total 20,000 1,38,000 34,493. 8 The NPV for the upgrade option against 12% interest rate = Rs 34,494/- -------- End of Section - III --------- 10 _____________________ Bureau of Energy Efficiency

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

Formatting page ...

 

  Print intermediate debugging step

Show debugging info


 


Tags : Bureau of Energy Efficiency, BEE, National Productivity Council of India, NPC, Energy Audit, Certified Energy Manager, Certified Energy Auditor, EM & EA, bee papers, bee sample papers, bee books, portal for bee india, bee question bank, bee question papers with answers, bee model test papers, solved board question papers of last year, previous years solved question papers, free online solved question paper, india sample questions papers, last 10 years papers, guess sample questions papers, important questions, specimen / mock papers, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005.  

© 2010 - 2025 ResPaper. Terms of ServiceContact Us Advertise with us

 

bee_energy chat